Волны. Общие свойства волн. Волна



Дата24.04.2016
Размер2.35 Mb.
Волны. Общие свойства волн.

Волна - это явление распространения в пространстве с течением времени изменения (возмущения) физической величины переносящее с собой энергию.

Независимо от природы волны перенос энергии осуществляется без переноса вещества; последнее может возникнуть лишь как побочный эффект. Перенос энергии — принципиальное отличие волн от колебаний, в которых происходят лишь «местные» преобразования энергии. Волны же, как правило, способны удаляться на значительные расстояния от места своего возникновения. По этой причине волны иногда называют «колебанием, оторвавшимся от излучателя».



Волны можно классифицировать

По своей природе:

Упругие волны - волны, распространяющиеся в жидких, твёрдых и газообразных средах за счёт действия упругих сил.

Электромагнитные волны — распространяющееся в пространстве возмущение (изменение состояния) электромагнитного поля.





Волны на поверхности жидкости - условное название разнообразных волн, возникающих на поверхности раздела между жидкостью и газом или жидкостью и жидкостью. Волны на воде различаются принципиальным механизмом колебания (капиллярный, гравитационный и т. д.), что приводит к различным законам дисперсии и, как следствие, к различному поведению этих волн.

По отношению к направлению колебаний частиц среды:

Продольные волны - частицы среды колеблются параллельнопо направлению распространения волны (как, например, в случае распространения звука).

Поперечные волны - частицы среды колеблются перпендикулярнонаправлению распространения волны (электромагнитные волны, волны на поверхностях разделения сред).

картинка 5 из 2259

а - поперечные; б - продольные.



Волны смешанного типа.

По геометрии фронта волны:

Волновая поверхность (фронт волны) - геометрическое место точек, до которых дошло возмущение к данному моменту времени. В однородной изотропной среде скорость распространения волны одинакова по всем направлениям, значит, все точки фронта колеблются в одной фазе, фронт перпендикулярен направлению распространения волны, значения колеблющейся величины во всех точках фронта одинаковы.



Плоская волна — плоскости фаз перпендикулярны направлению распространения волны и параллельны друг другу.

image7

Сферическая волна — поверхностью равных фаз является сфера.

spocob_vozb[1]

Цилиндрическая волна — поверхность фаз напоминает цилиндр.

Спиральная волна — образуется в случае, если сферический или цилиндрический источник/источники волны в процессе излучения движется по некоторой замкнутой кривой.

Плоская волна

Волна называется плоской, если ее волновые повеpхности пpедставляют собой паpаллельные дpугдpугу плоскости, пеpпендикуляpные фазовой скоpости волны Если кооpдинатную ось х напpавить вдоль фазовой скоpости волны v, то вектоpy, описывающий волну, будет пpедставлять собой функцию только двух пеpеменных: кооpдинаты х и вpемени t (y = f(x,t)).image7

Рассмотpим плоскую монохроматическую (одна частота)синусоидальную волну, распространяющуюся в однородной среде без затухания вдоль оси X. Если источник (бесконечная плоскость) колеблется по закону y=, то до точки с координатой x колебание дойдет с запозданием на время .следовательно,

,где

- фазовая скоpость волны – скорость движения волновой поверхности (фронта),

– амплитуда волны – модуль максимального отклонения изменяющейся величины от положения равновесия,

– циклическая частота, T– период колебания, – частота волны( аналогично колебаниям)

k- волновое число, имеет смысл пространственной частоты,

Еще одной характеристикой волны является длина волны м, это расстояние, на которое волна распространяется за время одного периода колебания , онаимеетсмысл пространственного периода, это кратчайшее расстояние между точками, колеблющимися в одной фазе.


y
d:\documents and settings\admin.reanimat-7955fe\рабочий стол\новая папка\vib-6.gif

Длина волны связана с волновым числом соотношением , что аналогично временному соотношению

Волновое число связано с циклической частотой и скоростью распространения волны


x

y

y
d:\documents and settings\admin.reanimat-7955fe\рабочий стол\новая папка\400px-aksen-15.8.jpg

На рисунках представлены осциллограмма (а) и моментальный снимок (б) волны с указанными временным и пространственным периодами. В отличие от стационарного колебания волны имеют две основные характеристики: временну́ю периодичность и пространственную периодичность.



Общие свойства волн:

  1. Волны переносят энергию.

Интенси́вность волны́ - средняя по времени энергия, которую электромагнитная или звуковая волна переносит в единицу времени через единицу площади поверхности, расположенной перпендикулярно к направлению распространения волны. Интенсивность волны пропорциональна квадрату её амплитуды.I=W/t∙S, где W- энергия,t-время, S-площадь фронта. I=[Вт/м2]. Также интенсивность любой волны может быть определена I=wv, где v - скорость распространения волны (групповая).

2. Волны оказывают давление на тела (обладают импульсом).

3. Скорость волны в среде зависит от частоты волны – дисперсия.Таким образом, волны разных частот распространяются в одной и той же среде с различной скоростью (фазовая скорость).300px-two-slit_diffraction

4. Волны огибают препятствия – дифракция.

Дифракция наблюдается, если размер препятствия сравним с длиной волны.

5. На границе раздела двух сред волны отражаются и преломляются.

Угол падения равен углу отражения, а отношение синуса угла падения к синусу угла преломления есть величина постоянная для двух данных сред.


6. При наложении когерентных волн ( разность фаз этих волн в любой точке постоянна во времени) они интерферируют – образуется устойчивая картина минимумов и максимумов интерференции.

Волны и возбуждающие их источники называются когерентными, если разность фаз волн не зависит от времени. Волны и возбуждающие их источники называются некогерентными, если разность фаз волн изменяется с течением времени.

Интерферировать могут только волны, имеющие одинаковую частоту, в которых колебания совершаются вдоль одного и того же направления (т. е. когерентные волны). Интерференция бывает стационарной и нестационарной. Стационарную интерференционную картину могут давать только когерентные волны. Например, две сферические волны на поверхности воды, распространяющиеся от двух когерентных точечных источников, при интерференции дадут результирующую волну. Фронтом результирующей волны будет сфера.

При интерференции волн не происходит сложения их энергий. Интерференция волн приводит к перераспределению энергии колебаний между различными близко расположенными частицами среды. Это не противоречит закону сохранения энергии потому, что в среднем, для большой области пространства, энергия результирующей волны равна сумме энергий интерферирующих волн.

При наложении некогерентных волн средняя величина квадрата амплитуды результирующей волны равна сумме квадратов амплитуд накладывающихся волн. Энергия результирующих колебаний каждой точки среды равна сумме энергий ее колебаний, обусловленных всеми некогерентными волнами в отдельности.

7. Волны поглощаются средой. По мере удаления от источника амплитуда волны уменьшается, так как энергия волны частично передается среде.

8. Волны рассеиваются в неоднородной среде.

Рассеивание - возмущения волновых полей, вызываемые неоднородностями среды и помещёнными в эту среду рассеивающими объектами. Интенсивность рассеяния зависит от размера неоднородностей и частоты волны.





Механические волны. Звук. Характеристика звука.

Волна — возмущение, распространяющееся в пространстве.

Общие свойства волн:

  • переносят энергию;

  • обладают импульсом (оказывают давление на тела);

  • на границе двух сред отражаются и преломляются;

  • поглощаются средой;

  • дифракция;

  • интерференция;

  • дисперсия;

  • скорость волн зависит от среды, через которую проходят волны.



  1. Механические(упругие) волны.

Если в каком-нибудь месте упругой (твердой, жидкой или газообразной) среды возбуждены колебания частиц, то вследствие взаимодействия атомов и молекул среды колебания начинают передаваться от одной точки к другой с конечной скоростью зависящей от плотности и упругих свойств среды . Такое явление называется механической или упругой волной . Заметим, что механические волны не могут распространяться в вакууме.

Частный случай механических волн - волны на поверхности жидкости, волны, возникающие и распространяющиеся по свободной поверхности жидкости или на поверхности раздела двух несмешивающихся жидкостей. Они образуются под влиянием внешнего воздействия, в результате которого поверхность жидкости выводится из равновесного состояния. При этом возникают силы, восстанавливающие равновесие: силы поверхностного натяжения и тяжести.

Механические волны бывают двух видов

Поперечные

Волны, в которых колебания происходят перпендикулярно направлению распространения волны.



Примером волны такого рода могут служить волны, бегущие по натянутому резиновому жгуту или по струне.




Продольные

Волны, в которых колебания происходят вдоль направления распространения волны.



Волны в упругом стержне или звуковые волны в газе являются примерами таких волн.




Продольные волны, сопровождаемые деформациями растяжения и сжатия, могут распространяться в любых упругих средах: газах, жидкостях и твердых телах. Поперечные волны распространяются в тех средах, где появляются силы упругости при деформации сдвига, т. е. в твердых телах.



Волновая поверхность-поверхность, на которой в данный момент фазы колебаний, создаваемых волной, имеют одинаковые значения (или иначе - это фронт волны). Волновые поверхности могут быть любой формы. В простейших случаях они имеют форму плоскости(а) или сферы(б). В плоской волне волновые поверхности представляют собой систему параллельных друг другу плоскостей, в сферической волне – систему концентрических сфер.


Значительный интерес для практики представляют простые гармонические или синусоидальные волны. Уравнение плоской синусоидальной волны имеет вид:

, где

– так называемое волновое число,

круговая частота,

А – амплитуда колебания частиц.

На рисунке изображены «моментальные фотографии» поперечной волны в два момента времени: t и t + Δt. За время Δt волна переместилась вдоль оси OX на расстояние υΔt. Такие волны принято называть бегущими.

Длиной волны λ называют расстояние между двумя соседними точками на оси OX, колеблющимися в одинаковых фазах. Расстояние, равное длине волны λ, волна пробегает за периодТ, следовательно,

λ = υT, где υ – скорость распространения волны.

Для любой выбранной точки на графике волнового процесса (например, для точки A) с течением времени t изменяется координата x этой точки, а значение выражения ωt – kx не изменяется. Через промежуток времени Δt точка A переместится по оси OX на некоторое расстояние Δx = υΔt. Следовательно: ωt – kx = ω(t + Δt) – k(x + Δx) = const или ωΔt = kΔx.

Отсюда следует:

или

Таким образом, бегущая синусоидальная волна обладает двойной периодичностью – во времени и пространстве. Временной период равен периоду колебаний T частиц среды, пространственный период равен длине волны λ. Волновое число является пространственным аналогом круговой частоты .



  1. Звук.

Звук – это распространяющиеся в упругих средах – газах, жидкостях и твёрдых телах – механические колебания, воспринимаемые органами слуха. Звук - волна с достаточно низкой интенсивностью.Диапазон слышимыхзвуковых частот лежит в пределах приблизительно от 20 Гц до 20 кГц. Волны с частотой менее 20 Гц называются инфразвуком, а с частотой более 20 кГц – ультразвуком. Волны с частотами от до Гц называются гиперзвуком. Изучением звуковых явлений занимается раздел физики, который называют акустикой.

Любой колебательный процесс описывается уравнением. Выведено оно и для звуковых колебаний:



Основные характеристики звуковых волн



Субъективное восприятие звука

(громкость, высота, тембр)



Объективные физические характеристики звука

(скорость, интенсивность, спектр)



  1. Спектр – разложение на гармонические колебания по частотам. Восприятие звука органами слуха зависит от того, какие частоты входят в состав звуковой волны. Шум - звуки, образующие набор частот, непрерывно заполняющих некоторый интервал (сплошной спектр частот). Музыкальные (тональные) звуки – звуки, образующие линейчатый спектр частот: частоты n входящие в состав музыкальных звуков, образуют ряд дискретных значений. Музыкальным звукам соответствуют периодические или почти периодические колебания. Каждая синусоидальная звуковая волна называется тоном. Высота тона зависит от частоты: чем больше частота, тем выше тон.

  2. Музыкальные звуки с одним и тем же основным тоном различаются тембром, который определяется наличием обертонов - их частотами и амплитудами, характером нарастания амплитуд в начале звучания и их спадом в конце звучания.

  3. Высота звука, качество звука, определяемое человеком субъективно на слух и зависящее в основном от его частоты, т. е. от числа колебаний в секунду.

  4. Громкость звука зависит от интенсивности звука, т. е. определяется амплитудой колебаний в звуковой волне. Наибольшей чувствительностью ор­ганы слуха обладают к звукам с частотами от 700 до 6000 Гц. В этом диапазоне ухо способно воспринимать звуки с интенсивностью околоВт/м2.

  5. Скорость звука - это характеристика среды, в которой распространяется волна. Она определяется двумя факторами: упругостью и плотностью материала. Как правило, в газах скорость звука меньше, чем в жидкостях, а в жидкостях скорость звука меньше, чем в твёрдых телах, что связано в основном с убыванием сжимаемости веществ в этих фазовых состояниях соответственно. В среднем, в идеальных условиях, в воздухе скорость звука составляет 340—344 м/с

Скорость звука в любой газообразной среде вычисляется по формуле:

, где

β — адиабатическая сжимаемость среды,

ρ — плотность.


  1. Применение звука

Хорошо известны животные, обладающие способностью к эхолокации — летучие мыши и дельфины. По своему совершенству эхолокаторы этих животных не уступают, а во многом и превосходят (по надежности, точности, энергетической экономичности) современные эхолокаторы, созданные человеком.

Эхолокаторы, используемые под водой, называются гидролокаторами или сонарами (название sonar образован из начальных букв трех английских слов: sound — звук; navigation — навигация; range — дальность). Сонары незаменимы при исследованиях морского дна (его профиля, глубины), для обнаружения и исследования различных объектов, движущихся глубоко под водой. При их помощи могут быть легко обнаружены как отдельные большие предметы или животные, так и стаи небольших рыб или моллюсков.

Волны ультразвуковых частот широко используются в медицине в диагностических целях. УЗИ-сканеры позволяют исследовать внутренние органы человека. Ультразвуковое излучение менее вредно для человека, чем рентгеновское.

Электромагнитные волны.

Их свойства.

Электромагнитная волна - это электромагнитное поле, распространяющееся в пространстве с течением времени.

Электромагнитные волны могут возбуждаться только ускоренно движущимися зарядами.

Существование электромагнитных волн было теоретически предсказано великим английским физиком Дж. Максвеллом в 1864 году. Он предложил новую трактовку закона электромагнитной индукции Фарадея и развил его идеи дальше.

Всякое изменение магнитного поля порождает в окружающем пространстве вихревое электрическое поле, изменяющееся во времени электрическое поле порождает в окружающем пространстве магнитное поле.

e:\svetata\natata\школа\физика\2-6-2.gif

Рисунок 1. Переменное электрическое поле порождает переменное магнитное поле и наоборот

Свойства электромагнитных волн на основе теории Максвелла:

Электромагнитные волны поперечны – векторы и перпендикулярны друг другу и лежат в плоскости, перпендикулярной направлению распространения.



e:\svetata\natata\школа\физика\2-6-3.gif

Рисунок 2. Распространение электромагнитной волны

Электрическое и магнитное поля в бегущей волне изменяются в одной фазе.

Векторыв бегущей электромагнитной волне образуют так называемую правую тройку векторов.

Колебания векторов ипроисходят синфазно: в один и тот же момент времени, в одной точке пространства проекции напряженностей электрического и магнитного полей достигают максимума, минимума или нуля.





Электромагнитные волны распространяются в веществе с конечной скоростью

Где - диэлектрическая и магнитная проницаемость среды (от них зависит скорость распространения электромагнитной волны в среде),



- электрическая и магнитная постоянные.

Скорость электромагнитных волн в вакууме



При распространении волн возникает поток электромагнитной энергии. Если выделить площадку S (рис. 2), ориентированную перпендикулярно направлению распространения волны, то за малое время Δt через площадку протечет энергия равная ΔWэм = (wэ + wм)υSΔt., где wэ и wм объемные плотности энергии электрического и магнитного полей соответственно.

Плотностью потокаэлектромагнитной энергииили интенсивностью J называют электромагнитную энергию, переносимую волной за единицу времени через поверхность единичной площади:

,




Подставляя сюда выражения для , и υ, и учитывая равенство объемных плотностей энергии электрического и магнитного полей в электромагнитной волне, можно получить:



Электромагнитные волны могут быть поляризованы.

Так же электромагнитные волны обладают всеми основными свойствами волн: переносят энергию, обладают импульсом, они отражаются и преломляются на границе раздела двух сред, поглощаются средой, проявляют свойства дисперсии, дифракции и интерференции.



Опыты Герца (экспериментальное обнаружение электромагнитных волн)

Впервые электромагнитные волны были экспериментально изучены

Герцем в 1888г. Он разработал удачную конструкцию генератора электромагнитных колебаний (вибратор Герца) и метод обнаружения их способом резонанса.

Вибратор состоял из двух линейных проводников, на концах которых имелись металлические шарики, образующие искровой промежуток. При подаче от индукционной к тушки высокого напряжения в промежутке проскакивала искра, она закорачивала промежуток. За время ее горения, в контуре совершалось большое количество колебаний. Приемник (резонатор) состоял из проволоки с искровым промежутком. Наличие резонанса выражалось в возникновении искр в искровом промежутке резонатора в ответ на искру, возникающую в вибраторе.



e:\svetata\natata\школа\физика\herz.gif

Таким образом, опыты Герца подвели прочную основу под теорию Максвелла. Электромагнитные волны, предсказанные Максвеллом, оказались реализованными на опыте.



ПРИНЦИПЫ РАДИОСВЯЗИ

Радиосвязь – передача и прием информации с помощью радиоволн.

24 марта 1896 г. на заседании физического отделения Российского физико-химического общества Попов при помощи своих приборов наглядно продемонстрировал передачу сигналов на расстояние 250 м, передав первую в мире радиограмму из двух слов «Генрих Герц».





СХЕМА ПРИЕМНИКА А.С.ПОПОВА

popov

Попов использовал радиотелеграфную связь (передача сигналов разной длительности), такая связь может осуществляться только с помощью кода. В качестве источника радиоволн использовался искровой передатчик с вибратором Герца, а приемником служил когерер, стеклянная трубка с металлическими опилками, сопротивление которой при попадании на нее электромагнитной волны падает в сотни раз. Для увеличения чувствительности когерера один его конец заземлялся, а другой присоединялся к поднятой над Землей проволоке, общая длина антенны четверть длины волны. Сигнал искрового передатчика быстро затухает и не может быть передан на большие расстояния.

Для радиотелефонной связи (передача речи и музыки) используется высокочастотный модулированный сигнал. Сигнал низкой (звуковой) частоты несет в себе информацию, но практически не излучается, а сигнал высокой частоты излучается хорошо, но информацию не несет. Для радиотелефонной связи используют модуляцию.

Модуляция – процесс установления соответствия между параметрами ВЧ и НЧ сигнала.

В радиотехнике применяется несколько видов модуляций: амплитудная, частотная, фазовая.



Амплитудная модуляция - изменение амплитуды колебаний (электрических, механических и др.), происходящее с частотой, намного меньшей, чем частота самих колебаний.

http://dic.academic.ru/pictures/bse/gif/0201585639.gif

Гармоническое колебание высокой частоты ω модулировано по амплитуде гармоническим колебанием низкой частоты Ω (τ = 1/Ω — его период), t — время, A — амплитуда высокочастотного колебания, T — его период.

Схема радиосвязи с помощью АМ сигнала

рисунок2

Генератор с амплитудной модуляцией



Амплитуда ВЧ сигнала изменяется в соответствием с амплитудой НЧ сигнала, затем модулированный сигнал излучается передающей антенной.

В радиоприемнике приемная антенна улавливает радиоволны, в колебательном контуре за счет резонанса выделяется и усиливается тот сигнал, на частоту которого настроен контур (несущая частота передающей станции), затем нужно выделить низкочастотную составляющую сигнала.

272px-detector_receiver_rus_standart

Детекторный радиоприемник

Детектирование – процесс преобразования высокочастотного сигнала в сигнал низкой частоты. Полученный после детектирования сигнал соответствует тому звуковому сигналу, который действовал на микрофон передатчика. После усиления колебания низкой частоты могут быть превращены в звук.

схема детек

Детектор (демодулятор)

схема 2

Диод служит для выпрямления переменного тока

ur2-72

а) АМ сигнал, б) детектированный сигнал

РАДИОЛОКАЦИЯ

Обнаружение и точное определение местонахождения объектов и скорости их движения с помощью радиоволн называется радиолокацией. В основе принципа радиолокации лежит свойство отражения электромагнитных волн от металлов.



c:\documents and settings\admin\мои документы\загрузки\локатор.jpg

1 — вращающаяся антенна; 2 — антенный переключатель; 3 — передатчик; 4 — приемник; 5 — блок развертки; 6 — индикатор расстояния; 7 — индикатор направления.



радиолокация

Для радиолокации используются высокочастотные радиоволны (УКВ), с их помощью легко формируется направленный пучок и высока мощность излучения. В метровом и дециметровом диапазоне – решетчатые системы вибраторов, в сантиметровом и миллиметровом – параболические излучатели. Локация может вестись как в непрерывном (для обнаружения цели), так и в импульсном (для определения скорости движения объекта) режиме.

Области применения радиолокации:


  • Авиация, космонавтика, флот: безопасность движения судов при любой погоде и в любое время суток, предотвращение их столкновения, безопасность взлета и. посадки самолетов.

  • Военное дело: своевременное обнаружение самолетов или ракет противника, автоматическая корректировка зенитного огня.

  • Радиолокация планет: измерение расстояния до них, уточнение параметров их орбит, определение периода вращения, наблюдение рельефа поверхности. В бывшем Советском Союзе (1961)—радиолокация Венеры, Меркурия, Марса, Юпитера. В США и Венгрии (1946)—эксперимент по приему сигнала, отраженного от поверхности Луны.

ТЕЛЕВИДЕНИЕ

Схема телесвязи в принципе совпадает со схемой радиосвязи. Разница в том, что, кроме звукового сигнала передается изображение и сигналы управления (смена строки и смена кадра) для синхронизации работы передатчика и приемника. В передатчике эти сигналы модулируются и передаются, в приемнике улавливаются антенной и идут для обработки каждый в свой тракт.

Рассмотрим одну из возможных схем преобразования изображения в электромагнитные колебания с помощью иконоскопа:

С помощью оптической системы на мозаичный экран проецируется изображение, за счет фотоэффекта ячейки экрана приобретают различный положительный заряд. Электронная пушка формирует электронный пучок, который перемещается по экрану, разряжая положительно заряженные ячейки. Так как каждая ячейка – конденсатор, то изменение заряда приводит к появлению изменяющегося напряжения – электромагнитное колебание. Затем сигнал усиливается и поступает в модулирующее устройство. В кинескопе видеосигнал обратно преобразуется в изображение (по-разному в зависимости от принципа работы кинескопа).

Так как телевизионный сигнал несет намного больше информации, чем радио, то работа ведется на высоких частотах (метры, дециметры).

gggggg

Распространение радиоволн.
Радиоволна – это электромагнитная волна в диапазоне (104<м), используемая для беспроволочной передачи сигналов на расстояние.

Каждый участок этого диапазона применяется там, где лучше всего могут быть использованы его преимущества. Радиоволны различных диапазонов распространяются на различные расстояния. Распространение радиоволн зависит от свойств атмосферы. Земная поверхность, тропосфера и ионосфера также оказывают сильное влияние на распространение радиоволн.


Распространение радиоволн – это процесс передачи электромагнитных колебаний радиодиапазона в пространстве от одного места к другому, в частности от передатчика к приёмнику.
 Волны  различной частоты ведут себя по-разному. Рассмотрим подробнее особенности распространения длинных, средних, коротких   и  ультракоротких  волн.
Распространение длинных волн.

Длинные волны (>1000 м) распространяются:



  • На расстояния до 1—2 тысяч км за счёт дифракции на сферической поверхности Земли. Способны обогнуть Земной шар (рис 1). Затем их распространение происходит за счёт направляющего действия сферического волновода, не отражаясь.

http://plshs.narod.ru/chapters/radwav.files/image001.jpgРис. 1

Качество связи:

• Стабильность приёма. Качество приёма не зависит от времени суток, года, погодных условий.



Недостатки:

• Из-за сильного поглощения волны при ее распространении над земной поверхностью требуется большая антенна и мощный передатчик.

• Атмосферные разряды (молнии) создают помехи.

Использование:


  • Диапазон используется для радиовещания, для радиотелеграфной связи, радионавигационных служб и для связи с подводными лодками.

  • Работает небольшое число радиостанций, передающих сигналы точного времени и метеорологические сводки.

Распространение средних волн

Средние волны ( =100..1000 м) распространяются:



  • Как и длинные волны, способны огибать земную поверхность.

  • Как и короткие волны, так же могут многократно отражаться от ионосферы.

На больших расстояниях от передатчика днём приём может быть плохим, ночью приём улучшается. Сила приёма зависит также от времени года. Таким образом, днём они распространяются как короткие, а ночью - как длинные.

Качество связи:

  • Небольшая дальность связи. Средневолновые станции слышны в пределах тысячи километров. Но наблюдается большой уровень атмосферных и промышленных помех.

Использование:

  • Используются для служебной и любительской связи, а также главным образом для вещания.

Распространение  коротких   волн

Короткие   волны  (=10..100 м) распространяются:



  • Многократно отражаясь от ионосферы и поверхности земли (рис.2)

http://plshs.narod.ru/chapters/radwav.files/image002.jpg

(рис.2)


Качество связи:

Качество приёма на  коротких   волнах  очень сильно зависит от различных процессов в ионосфере, связанных с уровнем солнечной активности, временем года и временем суток. Не требуется передатчиков большой мощности. Для связи между наземными станциями и космическими аппаратами они непригодны, так как не проходят сквозь ионосферу.

Использование:


  • Для связи на большие расстояния. Для телевидения, радиовещания и радиосвязи с подвижными объектами. Работают ведомственные телеграфные и телефонные радиостанции. Этот диапазон, является самым «населенным».

Распространение ультракоротких  волн

Ультракороткие  волны  (<10 м) распространяются прямолинейно и, как правило, не отражаются ионосферой. Легко огибают препятствия и имеют высокую проникающую способность.



  • Иногда они могут отражаться от облаков, искусственных спутников земли или даже от Луны. При этом  дальность   связи  может несколько увеличится.

Качество связи:

Прием ультракоротких волны характерен постоянством слышимости, отсутствием замирании, а также уменьшением различных помех.

Связь на этих волнах  возможна только на расстоянии прямой видимости L (рис. 7).

http://plshs.narod.ru/chapters/radwav.files/image008.jpg

Рис. 7


Так как ультракороткие  волны  не распространяются за горизонт, возникает необходимость строить множество промежуточных передатчиков – ретрансляторов.

Ретранслятор — устройство, располагающееся на промежуточных пунктах линий радиосвязи, усиливающее принимаемые сигналы и передающее их дальше.

Ретрансляция - прием сигналов на промежуточном пункте, их усиление и передача в прежнем или в другом направлении. Ретрансляция предназначена для увеличения дальности связи.

Существует два способа ретрансляции: спутниковая и наземная.



Спутниковая:

Активный спутник ретрансляции  принимает сигнал наземной станции, усиливает его, и через мощный направленный передатчик отправляет сигнал на Землю в прежнем или в другом направлении.


15

Наземная:

Сигнал передается наземной аналоговой или цифровой радиостанции или сеть таких станций, а затем отправляется дальше в прежнем или в другом направлении.



c:\users\п\desktop\даша\image046.png

1 – радиопередатчик,



2 – передающая антенна, 3 – приемная антенна, 4 – радиоприемник.

Использование:

  • Для связи с искусственными спутниками Земли и

космическими ракетами. Широко используются для теле- и радиовещания (диапазоны УКВ и FM), радионавигации, радиолокации и сотовой  связи.

УКВ разделяются на следующие диапазоны:

метровые волны — от 10 до 1 метра, используются для телефонной связи между  судами,  судами  и  портовыми службами.

дециметровые — от 1 метра до 10 см, используются для спутниковой связи.

сантиметровые — от 10 до 1см, используются в радиолокации.

миллиметровые — от 1см до 1мм, используются в основном в медицине.


Каталог: olderfiles
olderfiles -> Сборник адресован социальным педагогам, специалистам по социальной работе, студентам педагогических специальностей
olderfiles -> Конспект лекций по курсу «Организационное поведение»
olderfiles -> Выполнила Верченова Евгения(8
olderfiles -> Уроки русского языка в 5 классе по учебному комплексу В. В. Бабайцевой для классов и школ с углублённым изучением русского языка книга для учителя
olderfiles -> Книга открытое сознание открытое общество
olderfiles -> Языковое бытие человека и этноса: когнитивный и психолингвистический
olderfiles -> Д. Мак-Фарленд Поведение животных. Психобиология, этология и эволюция
olderfiles -> Скромность в общении означает сдержанность в оценках, уважение вкусов, привязанностей других людей. Антиподами скромности являются высокомерие, развязность, позерство. Точность
olderfiles -> Учебно-методический комплекс курса «Педагогика»
olderfiles -> Адаптация иностранного опыта в условиях глобализации высшего образования


Поделитесь с Вашими друзьями:


База данных защищена авторским правом ©psihdocs.ru 2017
обратиться к администрации

    Главная страница