Видимый свет. Эта часть спектра составляет порядка 40-50 солнечной энергии, достигающей Земли. Для животных видимая часть спектра связана прежде всего с ориентированием в окружающей среде



Скачать 378,98 Kb.
страница1/5
Дата05.04.2019
Размер378,98 Kb.
  1   2   3   4   5
400 – 800 нм

Видимый свет. Эта часть спектра составляет порядка 40—50 % солнечной энергии, достигающей Земли. Для животных видимая часть спектра связана прежде всего с ориентированием в окружающей среде. Зрительная ориентация свойственна большинству дневных животных и используется как источник сложной информации о внешних усло­виях. Эффективность восприятия зрительных сигналов очень различна: от простых светочувствительных клеток, в которых световые воздей­ствия на зрительные пигменты фотохимически трансформируются в нервный импульс, до сложно устроенных глаз, способных к восприя­тию объемных образов в цветовом варианте. У ряда птиц зрительное восприятие распространяется на часть ультрафиолетовой зоны спектра; это доказано более, чем для 30 видов (D. Burkliard, 1990). Многие животные воспринимают как видимый свет ближнюю область ИК-излучения.

Впрочем, и многие ночные виды ориентируются с участием органов зрения, поскольку абсолютная темнота в сфере обитания животных встречается редко. Ослабление интенсивности света вызывает адап­тивные перестройки органов зрения (совы, козодои, некоторые ночные млекопитающие).

Обитание в условиях полной темноты, как правило, связано с редукцией органов зрения. Это, в частности, свойственно видам, обитающим в пещерах, а также многим почвенным животным. Впро­чем, у последних нередко светочувствительные органы, хотя и в редуцированном виде, все же сохраняются и используются для полу­чения информации о выходе на освещенную поверхность.

В океане интенсивность освещения падает с глубиной. Параллельно изменяется и спектральный состав света: глубже всего проникает его коротковолновая часть — синие и голубые лучи. Освещенность на мелководье мало отличается от суши, и обитающие здесь рыбы имеют и сетчатке большой процент колбочек, чувствительных к красному цвету. У рыб, обитающих в зеленой воде прибрежной зоны, таких колбочек нет; отсутствуют у них и оранжево-чувствительные клетки. Среди глубоководных рыб большинство имеют в сетчатке лишь один тип палочек, чувствительных к синему цвету.

Известно, что на глубине 800—950 м интенсивность света составляет около 1 % полдневного освещения на поверхности. Этого еще достаточно для светоощущения: порог зрительной чувствительности некоторых организмов приближается к 10'10 полуденного освещения. Дальнейшее увеличение глубины связано у одних видов с редукцией органов зрения, а у других — с развитием гипертрофированных глаз, способных воспринимать очень слабый свет. Последнее в значительной степени определяется наличием на больших глубинах светящихся организмов. Некоторые из них способны создавать освещение порядка 10'2 мкВт/см2, что выше порога световой чувствительности животных. Свечение голубое (длина волны 400—500 нм), что соответствует «на­стойке» органов зрения глубоководных животных. Биологическое свечение используют и рыбы, образуя симбиотические связи со све­тящимися микроорганизмами и формируя специальные органы, свет которых используется для подманивания добычи, взаимного опозна­вания, различения полов и т. п.

Свет как фактор фотосинтеза. В процессе фотосинтеза свет высту­пает как источник энергии, которая используется пигментной систе­мой (хлорофилл, в некоторых случаях — его аналоги). В результате происходит расщепление молекулы воды с выделением газообразного кислорода, а энергия, полученная фотохимической системой, утили­зируется для преобразования диоксида углерода в углеводы:

6С02 + 12Н20 -2816 кДж____=> C6H12O6+ 602+ 6Н20

Хлорофилл

Способность использовать лучистую энергию у хлорофилла и у зрительных пигментов животных очень близка; поэтому в спектре солнечного излучения область фотосинтетически активной радиации (ФАР) практически совпадает с диапазоном видимой части спектра с

длиной волны порядка 400—700 нм. Некоторые бактерии, имеющие бактериохлорофиллы, способны поглощать свет в длинноволновой части спектра (максимум в области 800—1000 нм).

Зеленый лист поглощает в среднем 75 % падающей на него лучистой энергии. Но коэффициент использования ее на фотосинтез невысок: около 10 % при низкой освещенности и лишь 1—2 % — при высокой. Остальная энергия переходит в тепловую, которая затрачивается на транспирацию и другие процессы.

Наиболее важные внешние факторы, влияющие на уровень фотосинтеза,— температура, свет, диоксид углерода и кислород. На уровне самого растения на этот процесс влияют содержание хлорофилла и воды, особенности анатомии листа, концентрация ферментов.

Зависимость фотосинтеза от температуры характеризуется кри­вой, на которой выделяются точки (зоны) минимума, оптимума и максимума. Минимальная температура, при которой возможен фотосинтез, видоспецифична и отражает приспособленность вида к темпе­ратурным условиям среды. У многих видов она совпадает с температурой замерзания тканевых жидкостей (—1, —2°С), но у наиболее холодолюбивых форм опускается до—5... —7°С. Максимальная температура фотосинтеза в среднем на 10—121,С ниже точки тепловой смерти. Температурный максимум фотосинтеза выше у южных растении. Оптимальном температурной зоной для фотосинтеза принято считать тепловые условия, при которых фотосинтез достигает 90 % своей максимальной величины; эта зона зависит от освещенности: повышается при ее увеличении и снижается в условиях затенения. Поэтому при низкой освещенности фотосинтез идет активнее при более низких температурах, а при высокой (более 3000 лк) интенсив­ность этого процесса увеличивается с повышением температуры.

Освещенность в своем влиянии на фотосинтез характеризуется так называемой кривой насыщения, вначале с повышением освещенности кривая потребления СO2 резко идет вверх, затем — по достижении определенного порога освещенности — нарастание фотосинтеза снижается, кривая приобретает форму гиперболы. В этой зависимости хорошо прослеживаются закономерности экологического плана: у тенелюбивых растений насыщение наступает при меньшей освещен­ности, чем у светолюбивых. В темноте кривые ассимиляции переходят за нулевой уровень: выделение СО2 при дыхании не компенсируется его потреблением для фотосинтеза. Минимальное освещение, при котором поглощение диоксида углерода для фотосинтеза равно выде­лению его при дыхании, называют точкой компенсации; у светолюбивых растений она располагается выше, чем у тенелюбивых. Кроме того, положение этой точки зависит от концентрации СО2 и от температуры.

Диоксид углерода в процессе фотосинтеза выступает как ресурс для синтеза углеводов. Норма содержания СО2 в атмосфере составляет 0,57 мг/л. Повышение концентрации ведет к усилению фотосинтеза, но лишь до известных пределов; при концентрации 5—10 % (против нормальной —0,03 %) фотосинтез ингибируется. В сочетании с реак­цией на другие факторы колебания концентрации СО2 определяют поддержание нормального уровня фотосинтеза в разнообразных при­родных условиях. Такие колебания обусловлены суточным ритмом фотосинтеза, закономерными изменениями интенсивности почвенно­го дыхания и некоторыми другими факторами. Например, суточные колебания ССЬ в густых растительных сообществах могут достигать 25 % от средних величин.

Вода, тоже участвующая в процессе фотосинтеза, редко его лими­тирует. Непрямым путем, однако, недостаток воды (в частности, сезонный) может быть ограничителем. Например, в западной Австралии некоторые виды растений по время засухи снижают фотосинтез на 2/3 по сравнению с весенним периодом.

Биологические ритмы

Фотопериодическая регуляция

Суточные ритмы

Циркадианные ритмы

Сезонные ритмы

Цирканнуальные ритмы

Гипоталамо-гипофизарная система

Линька

Сезонные миграции



Сезонные миграции. Миграциями называют закономерные, направ­ленные перемещения животных в пространстве. В отличие от передви­жений иного рода миграции (по В.Р. Дольнику, 1975) характеризуются следующими особенностями:

1. Строгая сезонность, вызывающая необходимость механизмов контроля календарных сроков миграции.

2. Множественная перестройка физиологических систем организма в соответствии со специфическими задачами миграции (усиление энергозатрат, ориентация в пространстве и т. п.); в миграцию вовле­каются только особи с определенным физиологическим состоянием.

3. Массовость, мигрируют не отдельные особи, а целые популяции или их структурные единицы. Массовость миграций обусловлена синхронизацией сроков развития миграционного состояния у всех особей.

Сезонные миграции известны для многих таксонов животных. Однако физиологические основы этого явления достаточно подробно изучены лишь у рыб (нерестовые миграции проходных форм) и у птиц.
Видимые лучи с длиной волны от 0,400 до 0,750 мкм (на их долю приходится большая часть энергии 45% солнечного излучения), достигающие поверхности Земли, имеют особенно большое значение для организмов. Зеленые растения за счет этого излучения синтезируют органическое вещество (осуществляют фотосинтез), которое используют в пищу все остальные организмы. Для большинства растений и животных видимый свет является одним из важных факторов среды, хотя есть и такие, для которых свет не является обязательным условием существования (почвенные, пещерные и глубоководные виды, приспособленные к жизни в темноте). Большинство животных способны различать спектральный состав света обладать цветовым зрением, а у растений цветки имеют яркую окраску для привлечения насекомыхопылителей.

Инфракрасные лучи с длиной волны более 0,750 мкм глаз человека не воспринимает, но они являются источником тепловой энергии (45% лучистой энергии). Эти лучи поглощаются тканями животных и растений, вследствие чего ткани нагреваются. Многие хладнокровные животные (ящерицы, змеи, насекомые) используют солнечный свет для повышения температуры тела (некоторые змеи и ящерицы являются экологически теплокровными животными). Световые условия, связанные с вращением Земли, имеют отчетливую суточную и сезонную периодичность. Почти все физиологические процессы у растений и животных имеют суточный ритм с максимумом и минимумом в определенные часы: например, в определенные часы суток цветок у растений открывается и закрывается, а у животных возникли приспособления к ночной и дневной жизни. Длина дня (или фотопериод), имеет огромное значение в жизни растений и животных.

Растения, в зависимости от условий обитания, адаптируются к тени теневыносливые растения или, напротив, к солнцусветолюбивые растения (к примеру, хлебные злаки). Однако сильное яркое солнце (яркость выше оптимальной) подавляет фотосинтез, поэтому в тропиках трудно получить высокий урожай культур, богатый белком. В умеренных зонах (выше и ниже экватора) цикл развития растений и животных приурочен к сезонам года: подготовка к изменению температурных условий осуществляется на основе сигнала изменения длины дня, которая в определенное время года в данном месте всегда одинакова. В результате этого сигнала включаются физиологические процессы, приводящие к росту, цветению растений весной, плодоношения летом и сбрасывания листьев осенью; у животных к линьке, накоплению жира, миграции, размножению у птиц и млекопитающих, наступлению стадии покоя у насекомых.  Изменение длины дня животные воспринимают с помощью органов зрения. А растения с помощью специальных пигментов, расположенных в листьях растений. Раздражения воспринимаются с помощью рецепторов, вследствие чего происходит ряд биохимических реакций (активация ферментов или выделение гормонов), а затем проявляются физиологические или поведенческие реакции.

Изучение фотопериодизма растений и животных показало, что реакция организмов на свет основана не просто на количестве получаемого света, а на чередовании в течение суток периодов света и темноты определенной длительности. Организмы способны измерять время, т.е.  обладают “биологическими часами” от одноклеточных до человека. “Биологические часы” также управляются сезонными циклами и другими биологическими явлениями.  “Биологические часы” определяют суточный ритм активности как целых организмов, так и процессов, происходящих даже на уровне клеток, в частности клеточных делений.



Экология (Степановских А.С.) - 2003 год
4.1. Излучение: свет как абиотический фактор

 

Свет является одним из важнейших абиотических факторов, особенно для фотосинтезирующих зеленых растений. Солнце излучает в космическое пространство громадное количество энергии. На границе земной атмосферы с космосом радиация составляет от 1,98 до 2 кал/см^ин, или 136 МВТ/см2 («солнечная постоянная»).



 

                                             

 

 

Рис.  4.1. Баланс солнечной радиации на земной поверхности



     в дневное время (из Т. К. Горышиной, 1979)

 

Как видно на рис. 4.1, 42% всей падающей радиации (33 + 9%) отражается атмосферой в мировое пространство, 15% поглощается толщей атмосферы и идет на ее нагревание и только 43% достигает земной поверхности. Эта доля радиации состоит из прямой радиации (27%) — почти параллельных лучей, идущих непосредственно от Солнцаи несущих наибольшую энергетическую нагрузку, и рассеянной (диффузной) радиации (16%) — лучей, поступающих к Земле со всех точек небосвода, рассеянных молекулами газов воздуха, капельками водяных паров, кристалликами льда, частицами пыли, а также отраженных вниз от облаков. Общую сумму прямой и рассеянной радиации называют суммарной радиацией.



Свет для организмов , с одной стороны, служит первичным источником энергии, без которого невозможна жизнь, а с другой — прямое воздействие света на протоплазму смертельно для организма. Таким образом, многие морфологические и поведенческие характеристики связаны с решением этой проблемы. Эволюция биосферы в целом была направлена главным образом на «укрощение» поступающего солнечного излучения, использование его полезных составляющих и ослабление вредных или на защиту от них. Следовательно, свет — это не только жизненно важный фактор, но и лимитирующий как на минимальном, так и максимальном уровне. С этой точки ни один из факторов так не интересен для экологии, как свет!

Среди солнечной энергии, проникающей в атмосферу Земли, на видимый свет приходится около 50% энергии, остальные 50% составляют тепловые инфракрасные лучи и около 1 % — ультрафиолетовые лучи (рис. 4.2).

 

        



 

    Рис. 4.2. Факторы космического воздействия на Землю

 

Видимые лучи («солнечный свет») состоят из лучей разной окраски и имеют разную длину волн (табл. 4.1).



 

 

 



 

 

Таблица 4.1





Поделитесь с Вашими друзьями:
  1   2   3   4   5


База данных защищена авторским правом ©psihdocs.ru 2019
обратиться к администрации

    Главная страница