Прямая на плоскости и в пространстве


Угол между прямой и плоскостью. Метод прямоугольного треугольника



Скачать 319,58 Kb.
страница6/12
Дата18.04.2020
Размер319,58 Kb.
ТипРеферат
1   2   3   4   5   6   7   8   9   ...   12
Угол между прямой и плоскостью. Метод прямоугольного треугольника

Прямая общего положения, как мы уже говорили, наклонена к плоскостям проекций под некоторым произвольным углом.



Угол между прямой и плоскостью определяется углом, составленным прямой и ее проекцией на эту плоскость (рис. 22). Угол a определяет угол наклона отрезка АВ к пл. Н. Из рис. 22: Ab1 |1пл. Н; Вb1 = ВЬ - Аа = Z Рис. 22

В прямоугольном треугольнике AВb1 катет Ab1 равен горизонтальной проекции ab; а другой катет Вb1 равен разности расстояний точек А и В от пл. Н. Если из точки В на горизонтальной проекции прямой ab проведем перпендикуляр и отложим на нем величину Z,то, соединив точку а с полученной точкой b0, получим гипотенузу аb0, равную натуральной величине отрезка АВ. На эпюре это выглядит так (рис. 23):

Аналогично определяется угол наклона прямой к фронтальной плоскости проекций (b) - рис. 24.

Обратите внимание: при построениях на горизонтальной проекции прямой мы откладываем на вспомогательной прямой величину Z; при построениях на фронтальной проекции - величину Y.

Рассмотренный метод носит название прямоугольного треугольника. С его помощью можно определить натуральную величину любого интересующего нас отрезка, а также углы его наклона к плоскостям проекций.





Поделитесь с Вашими друзьями:
1   2   3   4   5   6   7   8   9   ...   12


База данных защищена авторским правом ©psihdocs.ru 2019
обратиться к администрации

    Главная страница