Отчет по лабораторной работе 6 «Факторный анализ»



Скачать 54.13 Kb.
Дата24.04.2016
Размер54.13 Kb.
Министерство образования и науки РФ

«Национальный исследовательский Томский политехнический университет»

Институт кибернетики

Кафедра прикладной математики



gerb-b


Отчет по лабораторной работе 6

«Факторный анализ»

По дисциплине «Прикладная математическая статистика»

Выполнила студентка гр. 8БМ21

Дядова А.В.

Проверил профессор кафедры ПМ

Берестнева О.Г.

Томск — 2013



Постановка задачи
Изучить возможности статистического пакета StatGraphics в области проведения факторного анализа. С помощью пакета провести факторный анализ на основании экспертных оценок показателей студентов.
Теоретические положения
Факторный анализ — многомерный метод, применяемый для изучения взаимосвязей между значениями переменных. Предполагается, что известные переменные зависят от меньшего количества неизвестных переменных и случайной ошибки.

Факторный анализ впервые возник в психометрике и в настоящее время широко используется не только в психологии, но и в нейрофизиологии, социологии, политологии, в экономике, статистике и других науках. Основные идеи факторного анализа были заложены английским психологом и антропологом, основателем евгеники Гальтоном Ф. (1822—1911), внесшим также большой вклад в исследование индивидуальных различий. Но в разработку Факторного анализа внесли вклад многие ученые. Разработкой и внедрением факторного анализа в психологию занимались такие ученые как Спирмен Ч. (1904, 1927, 1946), Терстоун Л. (1935, 1947, 1951) и Кеттел Р. (1946, 1947, 1951). Также нельзя не упомянуть английского математика и философа Пирсона К., в значительной степени развившего идеи Ф. Гальтона, американского математика Хотеллинга Г., разработавшего современный вариант метода главных компонент. Внимания заслуживает и английский психолог Айзенк Г., широко использовавший Факторный анализ для разработки психологической теории личности. Математически факторный анализ разрабатывался Хотеллингом, Харманом, Кайзером, Терстоуном, Такером и др.

Факторный анализ позволяет решить две важные проблемы исследователя: описать объект измерения всесторонне и в то же время компактно. С помощью факторного анализа возможно выявление скрытых переменных факторов, отвечающих за наличие линейных статистических связей корреляций между наблюдаемыми переменными.

Таким образом, можно выделить 2 цели Факторного анализа:



  • определение взаимосвязей между переменными, (классификация переменных), т. е. «объективная R-классификация»;

  • сокращение числа переменных необходимых для описания данных.

Факторный анализ может быть:

  • разведочным — он осуществляется при исследовании скрытой факторной структуры без предположения о числе факторов и их нагрузках;

  • конфирматорным, предназначенным для проверки гипотез о числе факторов и их нагрузках.

Практическое выполнение факторного анализа начинается с проверки его условий. В обязательные условия факторного анализа входят:

  • Все признаки должны быть количественными;

  • Число наблюдений должно быть в два раза больше числа переменных;

  • Выборка должна быть однородна;

  • Исходные переменные должны быть распределены симметрично;

  • Факторный анализ осуществляется по коррелирующим переменным.

Главной проблемой факторного анализа является выделение и интерпретация главных факторов. При отборе компонент исследователь обычно сталкивается с существенными трудностями, так как не существует однозначного критерия выделения факторов, и потому здесь неизбежен субъективизм интерпретаций результатов. Существует несколько часто употребляемых критериев определения числа факторов. Некоторые из них являются альтернативными по отношению к другим, а часть этих критериев можно использовать вместе, чтобы один дополнял другой:

  • Критерий Кайзера или критерий собственных чисел. Этот критерий предложен Кайзером, и является, вероятно, наиболее широко используемым. Отбираются только факторы с собственными значениями равными или большими 1. Это означает, что если фактор не выделяет дисперсию, эквивалентную, по крайней мере, дисперсии одной переменной, то он опускается.

  • Критерий каменистой осыпи или критерий отсеивания. Он является графическим методом, впервые предложенным психологом Кэттелом. Собственные значения возможно изобразить в виде простого графика. Кэттел предложил найти такое место на графике, где убывание собственных значений слева направо максимально замедляется. Предполагается, что справа от этой точки находится только «факториальная осыпь» — «осыпь» является геологическим термином, обозначающим обломки горных пород, скапливающиеся в нижней части скалистого склона. Однако этот критерий отличается высокой субъективностью и, в отличие от предыдущего критерия, статистически необоснован. Недостатки обоих критериев заключаются в том, что первый иногда сохраняет слишком много факторов, в то время как второй, напротив, может сохранить слишком мало факторов; однако оба критерия вполне хороши при нормальных условиях, когда имеется относительно небольшое число факторов и много переменных. На практике возникает важный вопрос: когда полученное решение может быть содержательно интерпретировано. В этой связи предлагается использовать ещё несколько критериев.

  • Критерий значимости. Он особенно эффективен, когда модель генеральной совокупности известна и отсутствуют второстепенные факторы. Но критерий непригоден для поиска изменений в модели и реализуем только в факторном анализе по методу наименьших квадратов или максимального правдоподобия.

  • Критерий доли воспроизводимой дисперсии. Факторы ранжируются по доле детерминируемой дисперсии, когда процент дисперсии оказывается несущественным, выделение следует остановить. Желательно, чтобы выделенные факторы объясняли более 80 % разброса. Недостатки критерия: во-первых, субъективность выделения, во-вторых, специфика данных может быть такова, что все главные факторы не смогут совокупно объяснить желательного процента разброса. Поэтому главные факторы должны вместе объяснять не меньше 50,1 % дисперсии.

  • Критерий интерпретируемости и инвариантности. Данный критерий сочетает статистическую точность с субъективными интересами. Согласно ему, главные факторы можно выделять до тех пор, пока будет возможна их ясная интерпретация. Она, в свою очередь, зависит от величины факторных нагрузок, то есть если в факторе есть хотя бы одна сильная нагрузка, он может быть интерпретирован. Возможен и обратный вариант — если сильные нагрузки имеются, однако интерпретация затруднительна, от этой компоненты предпочтительно отказаться.

Ход работы
Для проведения факторного анализа метод главных компонент, максимальное число факторов - 3. Результаты факторного анализа представлены в табл. 1 и на рис. 1-2.

Таблица 1

Вклад исходных признаков в формирование факторных переменных







Рис. 1-2. График, показывающий вклад исходных признаков в формирование факторных переменных / График, показывающий зависимость второго фактора от первого


Рис. 3. График, показывающий вклад исходных признаков в формирование факторных переменных в процентном соотношении
Вывод

В ходе данной работы были изучены возможности статистического пакета StatGraphics в области проведения факторного анализа, с помощью пакета проведен факторный анализ показателей.


База данных защищена авторским правом ©psihdocs.ru 2016
обратиться к администрации

    Главная страница