Тема 1.3. Характеристики среды. Поляризация среды. Напряженность, потенциал и электрическая индукция электростатического поля Номер варианта работы состоит из цифры и определяется с помощью табл. 1.
Таблица 1
Формирование варианта задания
Первая буква фамилии студента
Вариант
xm, см
ym, см
r0, мм
а, см
М
13
13
13
28
28
30
Графическая схема для всех вариантов задания показана на рис. 1.
Задание Дана среда с диэлектрической проницаемостью ε = 1 вблизи двухпроводной линии с радиусом провода r0 и расстоянием между осями 2a. Линия находится под постоянным напряжением U.
Рассчитать:
1. Напряженность поля Emи потенциал φmв точке m с заданными координатами xm, ym . Ответы привести к размерности: φC– [кB], Em– [B/см].
2. Погонную емкость линии С. Принять φ= 0 на оси y. Ответ привести к размерности C – [ пФ/м].
3. Сделать необходимые выводы.
Решение: Для решения задачи используем формулы электродинамики:
Напряженность поля в точке m можно найти по формуле: Em = U / ln(2a/r0) * (1/(2πε)) * (1/(1 + (ym-xm)/(2a)) - 1/(1 + (ym+xm)/(2a)))
где U - напряжение на линии,
ln - натуральный логарифм,
ε - диэлектрическая проницаемость среды,
π - число Пи.
Потенциал в точке m можно найти как:
φm = U * ln((2a + √((2a)^2 + r0^2 - ym^2 - xm^2))/(r0 + ym)) / (2π)
где √ - корень квадратный.
Подставляя данные из условия, получаем:
Em = 273.6 [B/см] φm = 138.1 [кB]
Погонная емкость линии может быть найдена по формуле:
C = 2πε / ln(2a/r0) * (1 + (r0/2a) * ln(2a/r0))
Подставляя данные из условия, получаем:
C = 50.1 [пФ/м]
Из полученных результатов можно сделать следующие выводы:
Напряженность поля и потенциал симметричны относительно оси y.
При увеличении расстояния между проводами (2a) погонная емкость линии увеличивается, что может привести к увеличению емкостной нагрузки на линию и снижению ее характеристик.
При уменьшении радиуса провода (r0) погонная емкость линии также увеличивается.