Математического развития



страница36/105
Дата19.08.2022
Размер3,28 Mb.
#188491
1   ...   32   33   34   35   36   37   38   39   ...   105
Связанные:
3 A Mikhaylova E D Nosova A A Stolyar

Основными задачами математического развития детей до­школьного возраста являются:

  • развитие у детей логико-математических представлений (представлений о математических свойствах и отношениях предметов, конкретных величинах, числах, геометрических фигурах, зависимостях и закономерностях);

  • развитие сенсорных (предметно-действенных) способов по­знания математических свойств и отношений: обследование, сопоставление, группировка, упорядочение, разбиение;

  • освоение детьми экспериментально-исследовательских спо­собов познания математического содержания (воссоздание, экспериментирование, моделирование, трансформация);

  • развитие у детей логических способов познания математиче­ских свойств и отношений (анализ, абстрагирование, отрица­ние, сравнение, обобщение, классификация, сериация)';

  • овладение детьми математическими способами познания дей­ствительности: счет, измерение, простейшие вычисления;

  • развитие интеллектуально-творческих проявлений детей: на­ходчивости, смекалки, догадки, сообразительности, стремле­ния к поиску нестандартных решений задач;

  • развитие точной, аргументированной и доказательной речи, обогащение словаря ребенка;

  • развитие активности и инициативности детей;

  • воспитание готовности к обучению в школе: развитие само­стоятельности, ответственности, настойчивости в преодолении трудностей, координации движений глаз и мелкой моторики рук, умений самоконтроля и самооценки.

Содержание математического развития детей дошкольного возраста определяется, наряду с целями и задачами, следующими важными факторами.

  • Личностно-развивающая направленность содержания мате­матического развития дошкольников должна являться эффек­тивным средством развития интеллектуально-творческих спо­собностей ребенка и содействовать развитию важнейшего личностного качества — самостоятельности в решении интел­лектуальных задач.

  • Направленность математического содержания, которое ос­ваивает ребенок в дошкольном возрасте, является социализи­рующей. Накопленный логико-математический опыт ребенка обязательно станет его значимым личностным приобретени­ем, если обеспечит ситуацию успеха в разных видах деятель­ности, требующих проявления интеллектуально-творческих способностей.

  • Содержание математического развития дошкольников пропе-девтично. Осваиваемое ребенком содержание должно позво­лить ему на чувственном, а затем и логическом уровне познать некоторые стороны действительности и развить те структуры мышления, на основе которых впоследствии будут формиро­ваться основные математические понятия.

  • Осваиваемое содержание должно соответствовать возрастным и индивидуальным возможностям дошкольников, быть ори­ентированным на зону их ближайшего развития.

В качестве основных структурных компонентов содержания математического развития дошкольников выступают логико-ма­тематические представления и способы познания, которые пред­ставлены в таблице 3 в порядке усложнения.
Реализация обозначенных задач возможна на адекватном им содержании. Первым и важнейшим компонентом содержания математического развития дошкольников являются свойства и отношения. Значимость и необходимость выделения этого ком­понента обусловлена прежде всего тем, что:

  • математические понятия отражают определенные свойства действительности (число — количество, геометрическая фигу­ра — форму, протяженность в пространстве — длину и т.д.); движение к постижению математических понятий начинается с познания соответствующих свойств и отношений;

  • умственные действия со свойствами и отношениями — до­ступное и эффективное средство логико-математического развития детей и их интеллектуально-творческих способно­стей.

В процессе разнообразных действий с предметами дети осваивают такие свойства, как форма, размер (протяженность в пространстве), количество, пространственное расположение, длительность и последовательность, масса. Первоначально в ре­зультате зрительного, осязательно-двигательного, тактильного обследования, сопоставления предметов дети обнаруживают и выделяют в предметах разные их свойства. Дети сравнивают от­дельные предметы и группы предметов по разным свойствам, упорядочивают объекты по разным основаниям (например, по возрастанию или убыванию их размера, емкости, тяжести и т. д.), разбивают совокупности на группы (классы) по признакам и свойствам. В процессе этих действий дошкольники обнаружи­вают отношения сходства (эквивалентности) по одному, двум и более свойствам и отношениям порядка. При этом они учатся оперировать «в уме» не с самим объектом, а с его свойствами (абстрагируют отдельные свойства от самого предмета и от его других, незначимых для решения задачи свойств). Таким обра­зом формируется важнейшая предпосылка абстрактного мыш­ления — способность к абстрагированию.
В процессе осуществления практических действий дети по­знают разнообразные геометрические фигуры и постепенно пере­ходят к группировке их по количеству углов, сторон, вершин. У детей развиваются конструктивные способности и пространст­венное мышление. Они осваивают умение мысленно поворачи­вать объект, смотреть на него с разных сторон, расчленять, соби­рать и видоизменять его.

В познании величин дети переходят от непосредственных (на­ложение, приложение, сравнение «на глаз») к опосредованным способам их сравнения (с помощью предмета-посредника и изме­рения условной меркой). Это дает возможность упорядочивать предметы по их свойствам (размеру, высоте, длине, толщине, массе и другим). Ребенок убеждается в том, что одни и те же свой­ства в разных объектах могут иметь как одинаковую, так и разную степень выраженности (равные или разные по толщине и т. д.).


Пространственно-временные представления (наиболее слож­ные для ребенка-дошкольника) осваиваются через реально пред­ставленные отношения (далеко — близко, сегодня — завтра). По­знание этих отношений осуществляется в процессе анализа реаль­ной жизненной обстановки, разрешения проблемных ситуаций, решения специально разработанных творческих задач и модели­рования.
Познание чисел и освоение действий с числами — важнейший компонент содержания математического развития. Посредством числа выражаются количество и величины. Оперируя только чис­лами, которые являются показателями количеств и величин объ­ектов окружающей действительности, сравнивая их, увеличивая, уменьшая, можно делать выводы о точном состоянии объектов действительности.
Ребенок-дошкольник постигает сущность числа и действие с числами на протяжении длительного периода. Первоначально ма­лыши выделяют один или два предмета, сравнивают практиче­ским путем два множества. В этот же период или несколько позже дети овладевают счетом. Счет является способом определения численности множеств и способом их опосредованного сравне-
но
ния. В процессе счета дети постигают число как показатель мощ­ности множества. Сосчитывая разные по размеру, пространствен­ному расположению предметы, дети приходят к пониманию неза­висимости числа от других свойств предметов и совокупности в целом. Знакомятся с цифрами, знаками для обозначения чисел.
Решая арифметические задачи, дети осваивают специальные приемы вычислительной деятельности, например присчитывание и отсчитывание по единице.
На основе сложившегося логико-математического опыта ре­бенку 5—6 лет становятся доступными познание связей, зависи­мостей объектов, закономерностей, оценка различных состояний и преобразований. Ребенок определяет порядок следования; на­ходит фигуру, пропущенную в ряду фигур; понимает и исправляет ошибки; поясняет неизменность или изменение состояния объек­тов, веществ; следует алгоритмам и составляет их самостоятельно.




Поделитесь с Вашими друзьями:
1   ...   32   33   34   35   36   37   38   39   ...   105




База данных защищена авторским правом ©psihdocs.ru 2022
обратиться к администрации

    Главная страница