Математического развития


Основные идеи количественной теории натуральных чисел



страница27/105
Дата19.08.2022
Размер3,28 Mb.
#188491
1   ...   23   24   25   26   27   28   29   30   ...   105
Связанные:
3 A Mikhaylova E D Nosova A A Stolyar

Основные идеи количественной теории натуральных чисел
В количественной теории натуральное число с самого начала воспринимается как число элементов (мощность, численность) конечного множества.
Рассмотрим всевозможные конечные множества (говорят «класс, или семейство, множеств») и установим для них отноше­ние эквивалентности следующим образом: два множества А и В будем называть эквивалентными (обозначается это через А~В), если между элементами этих множеств можно установить взаимно однозначное соответствие.
Установленное таким образом отношение множеств является отношением типа эквивалентности, т. е. оно рефлексивно, сим­метрично и транзитивно. Для любых множеств А, В, С:
а) А~А; б) если А~В, то В~А; в) если А~В и В~С, то А~С.
Поэтому введенное отношение порождает разбиение данного семейства множеств на классы эквивалентности так, что любые два множества одного класса эквивалентны, а любые два множе­ства различных классов неэквивалентны.
Эквивалентные множества не совпадают полностью, всеми своими свойствами: множество пальцев человеческой руки и мно­жество, состоящее из пяти столов, различные, но эквивалентные множества.
Каждый класс эквивалентности характеризуется мощностью, т. е. любые два множества одного класса равномощны (имеют одинаковую мощность). Так как мы имеем дело лишь с конечны­ми множествами, то равномощность означает равночисленность. Мощность, или класс, равночисленных конечных множеств и на­зывают натуральным числом.
Таким образом, каждому конечному множеству Л приписыва­ют в качестве характеристики натуральное число т(А), опреде­ляющее его принадлежность определенному классу эквивалент­ности. При этом множествам, принадлежащим одному классу эк­вивалентности, приписывается одно и то же натуральное число:
если А~В, то т(А)=т(В);
множествам, принадлежащим различным классам эквивалент­ности,— различные натуральные числа:
если А~В, то т (А)^т(В).
Так как А и В — конечные множества, то натуральные числа т(А) и т(В) обозначают числа элементов (численность) этих мно­жеств.
В основе такой концепции натурального числа лежит абстрак­ция отождествления: отношение эквивалентности множеств отож­дествляет множества, принадлежащие одному классу эквивалент­ности по их численности.
В результате этого отождествления от множеств, принадлежа­щих одному классу эквивалентности, абстрагируется их общее свойство, характеризующее этот класс, в виде самостоятельного понятия — натурального числа.
Название «количественная теория» связано с тем, что в этой теории натуральное число обозначает количество элементов мно­жества.


Поделитесь с Вашими друзьями:
1   ...   23   24   25   26   27   28   29   30   ...   105




База данных защищена авторским правом ©psihdocs.ru 2022
обратиться к администрации

    Главная страница