Математические основы криптологии


В произвольном конечном поле



Скачать 298,92 Kb.
страница4/7
Дата26.03.2020
Размер298,92 Kb.
#143647
1   2   3   4   5   6   7
Связанные:
Математические основы криптологии

В произвольном конечном поле


Задача рассматривается в поле GF(q), где , — простое.

  1. Алгоритм исчисления индексов (index-calculus) эффективен, если невелико. В этом случае он имеет эвристическую оценку сложности .

  2. Алгоритм Эль-Гамаля, появившийся в 1985 году, применим при и имеет сложность арифметических операций.

  3. Алгоритм Копперсмита дискретного логарифмирования в конечном поле характеристики 2 стал первым субэкспоненциальным алгоритмом дискретного логарифмирования с константой в оценке сложности. Данный алгоритм появился в 1984 году — до изобретения решета числового поля.

Задача дискретного логарифмирования является одной из основных задач, на которых базируется криптография с открытым ключом. Классическими криптографическими схемами на её основе являются схема выработки общего ключаДиффи-Хеллмана, схема электронной подписи Эль-Гамаля, криптосистема Мэсси-Омуры для передачи сообщений. Их криптостойкость основывается на предположительно высокой вычислительной сложности обращения показательной функции. Последняя вычисляется достаточно эффективно, в то время как даже самые современные алгоритмы вычисления дискретного логарифма имеют очень высокую сложность, которая сравнима со сложностью наиболее быстрых алгоритмов разложения чисел на множители.

Другая возможность эффективного решения задачи вычисления дискретного логарифма связана с квантовыми вычислениями. Теоретически доказано, что с их помощью дискретный логарифм можно вычислить за полиномиальное время[2]. В любом случае, если полиномиальный алгоритм вычисления дискретного логарифма будет реализован, это будет означать практическую непригодность криптосистем на его основе.

9. Построение однонаправленных функций на основе возведения в степень в модульной арифметике.

Возведение очень большого числа A в очень большую степень x по любо-му модулю M ( ), то есть вычисление является не-сложной задачей для ЭВМ. Однако решение обратной задачи – нахождения степени x по известным у,A,M такой, что (задача дискретного логарифмирования, ), практически не разрешима за приемлемое время на современных ЭВМ (эффективного алгоритма вычисления дискретного логарифма пока не найдено). Поэтому модульная экспонента является однонаправленной функцией.
10. Регистр сдвига и линейные рекуррентные последовательности
Регистр сдвига с линейной обратной связью (РСЛОС, англ. Linear feedback shift register, LFSR) — регистр сдвига битовых слов, у которого входной (вдвигаемый) бит является линейной булевой функцией состояния остальных битов регистра до сдвига. Может быть организован как программными, так и аппаратными средствами и применяется для генерации псевдослучайных последовательностей битов, что находит применение, в частности, в криптографии.

В регистре сдвига с линейной обратной связью выделяют две части (модуля): собственно регистра сдвига и схемы (или подпрограммы) вычисляющих значение вдвигаемого бита. Регистр состоит из функциональных ячеек (или битов машинного слова или нескольких слов), в каждой из которой хранится текущее состояние одного бита. Количество ячеек , называют длиной регистра. Биты (ячейки) обычно нумеруются числами , каждая из которых способна хранить бит, причём в ячейку происходит вдвижение вычисленного бита, а из ячейки извлекается выдвигаемый очередной сгенерированный бит. Вычисление вдвигаемого бита обычно производится до сдвига регистра, и только после сдвига значение вычисленного бита помещается в ячейку .

Периодом регистра сдвига называют минимальную длину получаемой последовательности до начала её повторения. Так как регистр из битовых ячеек имеет только разных ненулевых состояний, то, принципиально, период регистра не может превышать это число. Если период регистра равен этому числу, то такой регистр называют регистром максимального периода.

Для РСЛОС функция обратной связи является линейной булевой функцией от состояний всех или некоторых битов регистра. Например, сумма по модулю два или её логическая инверсия является линейной булевой функцией (операция XOR, в формулах обозначают как ) и наиболее часто применяется в таких регистрах.

При этом те биты, которые являются переменными функции обратной связи, принято называть отводами.

Управление регистром в аппаратных реализациях производится подачей сдвигающего импульса (иначе называемого тактового или синхроимпульса) на все ячейки, в программных — выполнением программного цикла, включающего вычисление функции обратной связи и сдвига битов в слове.

Линейной рекуррентной последовательностью (линейной рекуррентной) называется всякая числовая последовательность , задаваемая линейным рекуррентным соотношением:
для всех
с заданными начальными членами , где n — фиксированное натуральное число, — заданные числовые коэффициенты, . При этом число n называется порядком последовательности.

Линейные рекуррентные последовательности иногда называют также возвратными последовательностями.



11. Симметричные и асимметричные шифрующие алгоритмы. Блочные и поточные шифры
Симметри́чные криптосисте́мы (также симметричное шифрование, симметричные шифры) — способ шифрования, в котором для шифрования и расшифровывания применяется один и тот же криптографический ключ. До изобретения схемы асимметричного шифрования единственным существовавшим способом являлось симметричное шифрование. Ключ алгоритма должен сохраняться в секрете обеими сторонами. Алгоритм шифрования выбирается сторонами до начала обмена сообщениями.

Скачать 298,92 Kb.

Поделитесь с Вашими друзьями:
1   2   3   4   5   6   7




База данных защищена авторским правом ©psihdocs.ru 2022
обратиться к администрации

    Главная страница