Лабораторная работа №2 «Итерационные методы решения систем линейных алгебраических уравнений» по дисциплине «Вычислительная математика»


Метод простых итераций для рассматриваемого примера



Скачать 126,02 Kb.
страница3/5
Дата26.10.2021
Размер126,02 Kb.
#174123
ТипЛабораторная работа
1   2   3   4   5
Связанные:
2 laba-10var

Метод простых итераций для рассматриваемого примера

Из системы (1) видно, что модули диагональных коэффициентов в каждом уравнении отличны от нуля, но модуль коэффициента z меньше суммы модулей всех остальных коэффициентов, не считая столбца свободных членов.


С помощью преобразований приходим к новому виду системы:

(5)

Из системы (5) видно, что модули диагональных коэффициентов в каждом уравнении отличны от нуля и меньше суммы модулей всех остальных коэффициентов, не считая столбца свободных членов.

Разделив каждое уравнение системы (5) на соответствующий диагональный коэффициент, сформируем столбец в левой части и перенесем остальные слагаемые в правую часть и получим рабочие формулы метода итераций:

Условия окончания итерационного процесса:





Метод Зейделя

Метод Зейделя представляет собой некоторую модификацию метода простых итераций. Основная его идея состоит в том, что при вычислении (k+1)-го приближения неизвестной xi учитываются уже вычисленные ранее (k+1)-е приближения неизвестных x0 , x1 , …, xi-1 ,. Иначе говоря, найденное (k+1)-е приближение сразу же используется для получения (k+1)-го приближения последующих координат (рис. 1).



Рис. 1


Предполагая, что k-e приближения корней системы (2) известны, (k+1)-е приближения корней будут находиться по следующим итерационным формулам метода Зейделя:
(6)


Скачать 126,02 Kb.

Поделитесь с Вашими друзьями:
1   2   3   4   5




База данных защищена авторским правом ©psihdocs.ru 2022
обратиться к администрации

    Главная страница