дифференциальных уравнений. Подобный анализ стал обычным делом в экономических разработках, при исследовании рынка и т. д.
Теория ячеек. Одним из аспектов системных исследований, который следует выделить, поскольку эта область разработана чрезвычайно подробно, является теория ячеек, изучающая системы, составленные из
подъединиц с определенными граничными условиями, причем между этими подъединицами имеют место процессы переноса. Такие ячеечные системы могут иметь, например, «цепную» или «сосковую» структуру (цепь ячеек или центральную ячейку, сообщающуюся с рядом периферийных ячеек). Вполне понятно, что при наличии в системе трех и более ячеек математические трудности становятся чрезвычайно большими. В этом случае анализ возможен лишь благодаря использованию преобразований Лапласа и аппарата теорий сетей и графов.
Теория множеств. Общие формальные свойства систем и формальные свойства закрытых и открытых систем могут быть аксиоматизированы в
языке теории множеств. По математическому изяществу этот подход выгодно отличается от более грубых и специализированных формулировок
«классической» теории систем. Связи аксиоматизированной теории систем с реальной проблематикой системных исследований пока выявлены весьма слабо.
Теория графов. Многие системные проблемы относятся к структурным и топологическим свойствам систем, а не к их количественным отношениям.
В этом случае используется несколько различных подходов. В
теории графов, особенно в теории ориентированных графов (диграфов), изучаются реляционные структуры, представляемые в топологическом пространстве. Эта теория применяется для исследования реляционных аспектов биологии. В магматическом смысле она связана с матричной алгеброй, но своими моделями – с
тем разделом теории ячеек, в котором рассматриваются системы, содержащие частично «проницаемые» подсистемы, а вследствие этого – с теорией открытых систем.
Поделитесь с Вашими друзьями: