Клод Элвуд Шеннон


СТАТЬЯ «МАТЕМАТИЧЕСКАЯ ТЕОРИЯ СВЯЗИ»



страница3/5
Дата16.06.2020
Размер1,26 Mb.
1   2   3   4   5
СТАТЬЯ «МАТЕМАТИЧЕСКАЯ ТЕОРИЯ СВЯЗИ»

Статья «Математическая теория связи» была опубликована в 1948 году и сделала Клода Шеннона всемирно известным. В ней Шеннон изложил свои идеи, ставшие впоследствии основой современных теорий и техник обработки, передачи и хранения информации. Результаты его работ в области передачи информации по каналам связи запустили огромное число исследований по всему миру. Шеннон обобщил идеи Хартли и ввёл понятие информации, содержащейся в передаваемых сообщениях. В качестве меры информации передаваемого сообщения M, Хартли предложил использовать логарифмическую функцию I = \log \left( M \right). Шеннон первым начал рассматривать передаваемые сообщения и шумы в каналах связи с точки зрения статистики, рассматривая как конечные, так и непрерывные множества сообщений. Развитая Шенноном теория информации помогла решить главные проблемы, связанные с передачей сообщений, а именно: устранить избыточность передаваемых сообщений, произвести кодирование и передачу сообщений по каналам связи с шумами.

Решение проблемы избыточности подлежащего передаче сообщения позволяет максимально эффективно использовать канал связи. К примеру, современные повсеместно используемые методы снижения избыточности в системах телевизионного вещания на сегодняшний день позволяют передавать до шести цифровых программ коммерческого телевидения, в полосе частот, которую занимает обычный сигнал аналогового телевидения.

Решение проблемы передачи сообщения по каналам связи с шумами при заданном соотношении мощности полезного сигнала к мощности сигнала помехи в месте приема, позволяет передавать по каналу связи сообщения со сколь угодно малой вероятностью ошибочной передачи сообщения. Также, это отношение определяет пропускную способность канала. Это обеспечивается применением кодов, устойчивых к помехам, при этом скорость передачи сообщений по данному каналу должна быть ниже его пропускной способности.

В своих работах Шеннон доказал принципиальную возможность решения обозначенных проблем, это явилось в конце 40-х годов настоящей сенсацией в научных кругах. Данная работа, как и работы, в которых исследовалась потенциальная помехоустойчивость, дали начало огромному числу исследований, продолжающихся и по сей день, уже более полувека. Ученые из СССР и США (СССР — Пинскер, Хинчин, Добрушин, Колмогоров; США — Галлагер (англ.)русск., Вольфовиц, Файнстейн) дали строгую трактовку изложенной Шенноном теории.

На сегодняшний день все системы цифровой связи проектируются на основе фундаментальных принципов и законов передачи информации, разработанных Шенноном. В соответствии с теорией информации, вначале из сообщения устраняется избыточность, затем информация кодируется при помощи кодов, устойчивых к помехам, и лишь потом сообщение передается по каналу потребителю. Именно благодаря теории информации была значительно сокращена избыточность телевизионных, речевых и факсимильных сообщений.

Большое количество исследований было посвящено созданию кодов, устойчивых к помехам, и простых методов декодирования сообщений. Исследования, проведенные за последние пятьдесят лет, легли в основу созданной Рекомендации МСЭ по применению помехоустойчивого кодирования и методов кодирования источников информации в современных цифровых системах.

Теорема о пропускной способности канала: любой канал с шумом характеризуется максимальной скоростью передачи информации, этот предел назван в честь Шеннона. При передаче информации со скоростями, превышающими этот предел, происходят неизбежные искажения данных, но снизу к этому пределу можно приближаться с необходимой точностью, обеспечивая сколь угодно малую вероятность ошибки передачи информации в зашумлённом канале.

ТЕОРЕМЫ ШЕННОНА

Прямая и обратная теоремы Шеннона для источника общего вида — о связи энтропии источника и средней длины сообщений.

Прямая и обратная теоремы Шеннона для источника без памяти — о связи энтропии источника и достижимой степени сжатия с помощью кодирования с потерями и последующего неоднозначного декодирования.

Прямая и обратная теоремы Шеннона для канала с шумами — о связи пропускной способности канала и существования кода, который возможно использовать для передачи с ошибкой, стремящейся к нулю (при увеличении длины блока).

В теории информации, по традиции, утверждения типа «для любого кода имеет место некоторое свойство» называются обратными теоремами, а утверждения типа «Существует код с заданным свойством» — прямыми теоремами.

Теорема Найквиста — Шеннона (в русскоязычной литературе — теорема Котельникова) — об однозначном восстановлении сигнала по его дискретным отсчётам.

Теорема Шеннона об источнике шифрования (или теорема бесшумного шифрования) устанавливает предел максимального сжатия данных и числовое значение энтропии Шеннона.

Теорема Шеннона — Хартли

АЛГОРИТМ ШЕННОНА — ФАНО

Алгоритм Шеннона — Фано — один из первых алгоритмов сжатия, который впервые сформулировали американские учёные Шеннон и Роберт Фано. Данный метод сжатия имеет большое сходство с алгоритмом Хаффмана, который появился на несколько лет позже. Алгоритм использует коды переменной длины: часто встречающийся символ кодируется кодом меньшей длины, редко встречающийся — кодом большей длины. Коды Шеннона — Фано префиксные, то есть никакое кодовое слово не является префиксом любого другого. Это свойство позволяет однозначно декодировать любую последовательность кодовых слов.

Основные сведения

Кодирование Шеннона — Фано (англ. Shannon–Fano coding) — алгоритм префиксного неоднородного кодирования. Относится к вероятностным методам сжатия (точнее, методам контекстного моделирования нулевого порядка). Подобно алгоритму Хаффмана, алгоритм Шеннона — Фано использует избыточность сообщения, заключённую в неоднородном распределении частот символов его (первичного) алфавита, то есть заменяет коды более частых символов короткими двоичными последовательностями, а коды более редких символов — более длинными двоичными последовательностями.

Алгоритм был независимо друг от друга разработан Шенноном (публикация «Математическая теория связи», 1948 год) и, позже, Фано (опубликовано как технический отчёт).



Поделитесь с Вашими друзьями:
1   2   3   4   5


База данных защищена авторским правом ©psihdocs.ru 2019
обратиться к администрации

    Главная страница