Илья Пригожин. Порядок из хаоса


За порогом химической неустойчивости



Скачать 169,51 Kb.
страница13/27
Дата31.07.2022
Размер169,51 Kb.
#174504
1   ...   9   10   11   12   13   14   15   16   ...   27
За порогом химической неустойчивости. Еще раз подчеркнем, как сильно спонтанное образование пространственных структур противоречит законам равновесной физики и принципу порядка Больцмана. Число комплексов, соответствующих таким структурам, чрезвычайно мало по сравнению с числом комплексов, отвечающих равномерному распределению. Но неравновесные процессы могут приводить к ситуациям, кажущимся немыслимыми с классической точки зрения.
Первое знакомство с молекулярной биологией. Образование колоний коллективных амеб — типичный пример того, что можно было бы назвать «порядком через флуктуации»: возникновение «центра притяжения», испускающего циклическую АМФ,5 сигнализирует о потере устойчивости нормальной питательной среды, т.е. об исчерпании запаса питательных веществ. То, что при нехватке пищевого ресурса любая амеба может начать испускание химических сигналов — циклической АМФ — и, таким образом, стать «центром притяжения» для остальных амеб, соответствует случайному характеру флуктуации. В данном случае флуктуация усиливается и организует среду.
Бифуркации и нарушение симметрии. Рассмотрим более подробно, как возникает самоорганизация и какие процессы начинают происходить, когда ее порог оказывается превзойденным. В равновесном или слабо неравновесном состоянии существует только одно стационарное состояние, зависящее от значений управляющих параметров. Обозначим управляющий параметр через λ (им может быть, например, концентрация вещества В в брюсселяторе.6 Проследим за тем, как изменяется состояние системы с возрастанием значения В. Увеличивая концентрацию В, мы как бы уводим систему все дальше и дальше от равновесия. При некотором значении В мы достигаем порога устойчивости термодинамической ветви. Обычно это критическое значение называется точкой бифуркации.
Рассмотрим некоторые типичные бифуркационные диаграммы. В точке бифуркации В термодинамическая ветвь становится неустойчивой относительно флуктуации (рис. 1). При критическом значении λС управляющего параметра λ система может находиться в трех различных стационарных состояниях: С, Е и D. Два из них устойчивы, третье неустойчиво. Очень важно подчеркнуть, что поведение таких систем зависит от их предыстории. Начав с малых значений управляющего параметра λ и медленно увеличивая их, мы с большой вероятностью опишем траекторию ABC. Наоборот, начав с больших значений концентрации Х и поддерживая постоянным значение управляющего параметра λ, мы с высокой вероятностью придем в точку D. Таким образом, конечное состояние зависит от предыстории системы. До сих пор история использовалась при интерпретации биологических и социальных явлений. Совершенно неожиданно выяснилось, что предыстория может играть роль и в простых химических процессах.

Рис. 1. Бифуркационная диаграмма. Стационарные значения переменной X представлены на диаграмме как функции параметра бифуркации λ. Сплошные линии соответствуют устойчивым, штриховые — неустойчивым стационарным состояниям. Чтобы достичь ветви D, необходимо выбрать начальную концентрацию Х0 выше значений Х, соответствующую ветви Е.
Рассмотрим бифуркационную диаграмму, изображенную на рис. 2. От предыдущей диаграммы она отличается тем, что в точке бифуркации появляются два устойчивых решения. В связи с этим, естественно, возникает вопрос: по какому пути пойдет дальнейшее развитие системы после того, как мы достигнем точки бифуркации? У системы имеется «выбор»: она может отдать предпочтение одной из двух возможностей, соответствующих двум неравномерным распределениям концентрации X в пространстве.

Рис. 2. Симметричная бифуркационная диаграмма. X как функция параметра бифуркации λ. При λ < λС существует только одно стационарное состояние, которое устойчиво. При λ > λС существуют два стационарных состояния при любом значении X (прежнее устойчивое стационарное состояние теряет устойчивость).

Каталог: wp-content -> uploads -> 2013
2013 -> Сборник методических материалов
2013 -> Методические указания по подготовке, оформлению и защите выпускной квалификационной работы для студентов
2013 -> Рабочая программа профессиональной подготовки водителей транспортных средств категории "C" I. Пояснительная записка рабочая программа профессиональной подготовки водителей транспортных средств категории "
2013 -> Пояснительная записка Цель и задачи Программы Принципы построения Программы
2013 -> Исследовательская и проектная деятельность учащихся как инструмент повышения учебной мотивации гимназистов
2013 -> Психолого-педагогическая компетентность педагога психолога
2013 -> Учебно-методический комплекс социальная психология направление 030300 Психология Квалификация (степень) выпускника: бакалавр
2013 -> Анализ инновационной деятельности
2013 -> Человек и ситуация: Уроки социальной психологии
2013 -> О направлении рекомендаций

Скачать 169,51 Kb.

Поделитесь с Вашими друзьями:
1   ...   9   10   11   12   13   14   15   16   ...   27




База данных защищена авторским правом ©psihdocs.ru 2022
обратиться к администрации

    Главная страница