Цветкова Л. С. Нейропсихология счета, письма и чтения: нарушение и восстановление. М.: «Юристъ», 1997. 256 с



страница9/22
Дата27.04.2016
Размер3.62 Mb.
ТипРеферат
1   ...   5   6   7   8   9   10   11   12   ...   22

Например, для этой цели может быть применен метод соотнесения слова-наименования с числом натурального ряда, где используется порядковый счет — с целью выделения отдельных слов-наименований чисел (в процессе просчитывания натурального ряда чисел) с одновременным соотнесением слова-наименования с обозначением числа, что позволяет создать нужные условия для закрепления связи число — слово (наименование). В некоторых случаях эффективным оказывается метод связи оптического изображения числа с первой буквой его наименования. Эти буквы в свою очередь вводятся в определенные слова, эмоционально близкие и знакомые больному. Например, название числа 7 нередко восстанавливается с помощью связи изображения числа 7 с буквой С (1 — С), а числа 8 с буквой В и т.д. (табл. 1). Одновременно выделенные звуко-буквы С, В желательно ввести в близкие для больного слова, например: С — Саша — сын, В — Вера — жена и т.д.
Таблица 1. Отработка наименования числа первого десятка (метод энграмм)

Цифра


Соответствующая буква

Слово, близкое больному

Выделение 1-го звука из слова

Наименование цифры

Цифра
1

Е

Елена (жена)



е

е... единица

1 единица
2

g

Дима (сын)



д

Д... два

2 два
3

т

Таня



т

т... три

Зтри
4

ч

человек



ч

ч... четыре

4 четыре
7

С

Сеня



с

с... семь

7 семь
8

В

Витя



в

в... восемь

8 восемь
9

g

дочка



д

д... девять

9 девять

Восстановление называния чисел второго и третьего десятков является самостоятельной задачей, и ее решение связано с восстановлением восприятия пространственных отношений, поскольку причиной этого нарушения чаще всего являются дефекты пространственного восприятия (табл. 2).

Таблица 2. Отработка наименования числа второго десятка

Число


Состав числа

Управление наименования


11

10+1


10 + 1

десять - на - один (дцать)

11

<— один-на-дцать
15

10 + 5


10 + 5 дцать - на - пять

15


пять-на-дцать

Таблица 3. Обобщенная схема наименования числа

1-й десяток

2-й десяток справа — налево



<—

3-й десяток слева — направо

— >

4-й десяток слева — направо



— >
1 — один

11=1+ 10 один-надесять (дцать)

20 + 1=21 двадцать один

30 + 1=31 тридцать один


2 —два

12 = 2 + 10 две-на-дцать

20 + 2 = 22 двадцать два

и т.д.
3 - три

13 = 3 + 10 три-на-дцать

20 + 3 = 23 двадцать три


4 — четыре

14=4+10 четыр-на-дцать

20+4=24 двадцать четыре


5 — пять

15-5 + 10 пять-на-дцать

20 + 5 = 25 двадцать пять


6 — шесть

16=6+10 шесть-на-дцать

20 + 6 = 26 двадцать шесть


7 — семь

17=7 + 10 семь-на-дцать

20 + 7 = 27 двадцать семь


8 — восемь

18=8+10 восемь-на-дцать

20+8 = 28 двадцать восемь


9 — девять

19=10+9 девять-надцать

20+ 9 = 29 двадцать девять


10 — десять

10+ 10 = 20 два-дцать

10+ 10+ 10 = 30 три -дцать

Больному предлагается схема, которая содержит правило образования слова-наименования числа и направление, в котором идет называние сложного числа (табл. 3). В таблице дается серия операций и их последовательность, которые больной должен выполнить прежде, чем назвать заданное число. Приведенная в таблице программа действий состоит из развернутой серии операций, представляющих собой способ актуализации наименования числа. Постепенно в процессе обучения этот способ сокращается по составу операций, интериоризируется с помощью постепенного перевода действия с одного уровня на другой, более высокий, и становится достоянием самого больного. После обучения больной самостоятельно 'продолжает успешно пользоваться этим способом.

Таблица отрабатывается по частям, сначала ее первая часть, затем вторая, третья и четвертая. Отработка названий чисел в пределах каждого десятка идет все время в сравнении с наименованием чисел следующего десятка. У этих больных нередко очень затруднено понимание названия чисел, обозначающих десятки. Восстановление наименования десятков также идет путем раскрытия содержания состава числа, отраженного в его «имени». Например, схема отработки понимания названия числа 50 выглядит следующим образом: 50 = 10 + 10 + 10 + + 10 + 10 = 5 х 10 = пять десят (ков) (табл. 4).


Таблица 4. Отработка наименования десятков

d:\оксана\новая папка (2)\image008.jpg

Методы восстановления разрядного строения числа

Наиболее стойким и часто встречающимся дефектом при теменно-затылочной акалькулии является нарушение понимания разрядного строения числа. Поэтому на этот дефект обращается особое внимание в восстановительном обучении. Работа над восстановлением названий чисел в пределах первой сотни способствует восстановлению понимания существования двух разрядов — десятков и единиц. Больные начинают понимать, что двузначное число в пределах первой сотни состоит всегда из десятков и единиц, что и получает отражение в наименовании числа. Кроме того, они усваивают общее правило называния чисел, указывающее на то, что чтение (называние) числа всегда начинается с более высокого разряда и идет в направлении к меньшему (ср. 25,35...95). Схему называния чисел второго десятка, имеющую обратное направление — от меньшего разряда к большему (ср. 19, 15 и т.д.) больные усваивают как исключение из общего правила называния чисел. Связь названия числа с его разрядным строением используется сначала для восстановления понимания того, что каждое сложное число состоит из разных разрядов, что и отражено в его наименовании.
Метод соотнесения названия числа с его разрядным строением помогает восстановить понимание того, что в названии числа отражены все разряды и что каждый разряд имеет свое название и, наконец, что наименование разряда отражает его величину и место в разрядной сетке. Например, 125 - 100 больше 20, а 20 — больше 5. Эта работа идет обязательно совместно с восстановлением у больного понимания и количественной взаимозависимости разрядов. С этой целью проводится ряд упражнений, с помощью которых раскрываются количественное содержание числа и количественные отношения между его разрядами. С использованием этого метода проводится большое количество различных упражнений, помогающих пониманию связи разрядного строения числа с его наименованием и с количественна стороной всего числа и отдельных его разрядов.
d:\оксана\новая папка (2)\image010.jpg

Упражнение 2. Написать наименования данных чисел.


Упражнение 3. Реконструкция числа. Дано: сто пятьдесят шесть. Из данных трех слов: а) написать возможные варианты чисел путем перестановки цифр (516, 165 и др.), б) написать их наименования, в) написать все полученные числа в строчку в порядке возрастания их величины (в порядке уменьшения), г) объяснить, как и почему отличается величина одного числа от другого.
Эти упражнения подводят к возможности работы собственно над восстановлением разрядного строения числа. Здесь можно использовать известные в литературе методы обучения детей разрядному строению числа и операциям с числами (В.В. Давыдов, 1957, 1958, 1967; Н.Н. Непомнящая, 1957, 1960). Главная задача этих методов — научить больного пониманию перехода одного разряда в другой и их количественных взаимоотношений. Первые два-три занятия (не более) проводятся с опорой на реальные предметы (так называемые этапы материализованной формы действия). В отличие от обучения детей нашим больным этот этап работы нужен лишь в качестве наглядного способа актуализации сохранившихся знаний о строении числа, а не для длительного и последовательного обучения этому, как это имеет место у детей. В течение нескольких занятий больной работает над самостоятельным разложением заданного ему количества предметов (палочек, спичек и т.д.) на разряды, опираясь при этом на знания о том, сколько и какие единицы входят в каждый разряд. Например, больному дается 15 палочек и задание — разложить их на десятки и единицы. Больной откладывает 10 палочек налево и 5 направо. Десяток палочек он заменяет картонным квадратиком, который и будет впредь обозначать один десяток, и к нему придвигает 5 палочек, которые обозначают единицы; после этого больной называет заданное число и записывает его в тетрадь, а в разрядную сетку записывает развернутую схему его построения:
d:\оксана\новая папка (2)\image012.jpg

Такую серию операций больной выполняет и с числами второго десятка. Больному даются любые числа второго десятка (25, 28 и т.д.), и он должен таким же образом развернуть их количественное содержание: налево отложить отдельно друг от друга 2 десятка палочек, затем заменить их двумя картонными квадратами, придвинуть к ним оставшееся количество единиц, сделать соответствующие записи и т.д. После прочного усвоения принятого построения двузначного числа проводятся упражнения с трехзначным числом, т.е. с числом, состоящим из трех разрядов. Здесь счет идет сразу по десяткам. Больные к этому времени обычно уже знают, что 100 состоит из 10 десятков. Поэтому они сначала вместо нужного количества палочек («единиц») кладут слева 10 квадратиков, обозначающих вместе сотню, а затем заменяют их спичечной коробкой, в которую кладут все 10 квадратиков. И коробка с этого момента обозначает 1 сотню или 10 десятков. При задании составить число 123 больные кладут 1 спичечную коробку, обозначающую сотню, 2 пуговицы, обозначающие десятки, и 3 спички (палочки), обозначающие единицы (табл. 5).

Таблица 5. Восстановление разрядного строения числа
d:\оксана\новая папка (2)\image014.jpg

Эти упражнения очень полезны, но им не следует отводить много времени. После усвоения общего принципа построения числа надо сразу переходить к работе с числом без опоры на его количественную сторону, для чего использовать разрядную сетку.


Метод разрядной сетки включает в себя ряд приемов и упражнений, которые помогают освоить и закрепить восстанавливаемое действие или психический процесс. Цель — восстановить понимание разрядного строения числа. Приемы предварительной работы над числом вне разрядной сетки:
1) анализ и разбор заданных чисел по разрядам вне разрядной сетки,
2) прием заполнения пустого места (разряда) в числе, т.е. прием восстановления понимания значения нуля,
3) прием перестановки цифр в одном и том же числе для получения новых чисел,
4) прием сравнительного анализа полученных чисел (разрядного количественного).
После закрепления полученных навыков можно переходить к работе с собственно разрядной сеткой. И здесь возможны самые различные упражнения. Например, вписывание в разрядную сетку задаваемых чисел, строго придерживаясь разрядов. Пониманию соотношения разрядов в числе очень помогают упражнения, в которых больному даны одни и те же (или одна) цифры, которые путем вписывания их в разрядную сетку превращаются в число и каждый раз в другое (по своей количественной сущности) в зависимости от места, которое они занимают в этой сетке. Например, больному даются две цифры — 1 и 2. Он проставляет их в сетку и называет полученные числа. Пустые клетки сначала не заполняются и ставится прочерк. А затем идет работа над значением нуля в числе, отрабатывается понимание количественной сущности нуля как указателя на отсутствие количества в каком-либо разряде (105; 150). И после этого прочерки (черточки) в числах замещаются нулем (табл. 6).
Таблица 6. Восстановление разрядного строения числа

Сотни тысяч

Десятки тысяч

Единицы тысяч

Сотни

Десятки


Единицы

Число
1

2

12



1

2

_



120

1

-



2

102
1

-

2

_



_

102000



С помощью этих приемов и упражнений у больного восстанавливается осознание зависимости значения числа от его места в разрядной сетке, т.е. в пространстве, восстанавливается также и понимание значения и места нуля в записи числа. Эти знания закрепляются в целом ряде упражнений, в которых от больного снова требуется анализ разрядов заданного числа, снова вне разрядной сетки. Для этого больной должен выполнить следующие задания: а) назвать разряды, из которых состоит заданное число, б) показать вразброс, где десятки, тысячи, единицы и т.д. в данном числе, в) составить двузначное или любое другое сложное число, г) назвать пропущенный в данном числе разряд (1 -595, 1-5, -6 и т.п.), д) написать в столбик друг под другом заданные числа 25, 384, 108, 10590 и прочитать число и т.д.

Существует еще множество разнообразных методов, приемов и упражнений для восстановления понимания разрядного строения числа, но принцип построения методов один и тот же. Для всех этих методов характерна общая направленность на восстановление осознания больными зависимости значения знака (числа) от его места в пространстве.


Итак, описанная нами работа по восстановлению счета и счетных операций включает обучение больных: а) пониманию состава числа, взаимозависимости чисел, их системности и целостности, б) называнию чисел, в) пониманию связи наименования с разрядным строением и количественной стороной числа, г) пониманию собственно разрядного строения числа и зависимости величины числа от его положения в пространстве. Все это и ведет к восстановлению понятия числа и создает основу для восстановления счислительных операций.
Методы восстановления счетных операций
Нарушение понятия числа не может не привести к дефектам счетных операций, поскольку выполнение арифметических действий сложения, вычитания, умножения и деления требует знания разрядного строения числа, схемы десятка, т.е. умения дополнять одно число другим в пределах десятка и т.д. Для правильного протекания процесса счета необходима также сохранность и пространственных представлений о направлении отнимания и прибавления. У больных описываемой группы счетные операции нарушаются именно в связи с дефектами обоих указанных звеньев в структуре арифметических действий.
Обучение больных счетным операциям требует длительной и направленной работы и начинается уже при работе над восстановлением понятия числа. Здесь больных, как мы видели, учат расчленению числа на составные части (состав числа), дополнению числа в пределах десятка. На этой же стадии больные обучаются и осознанному отношению к разрядному строению числа, пониманию места и значения нуля. Все это создает необходимые условия для восстановления счетных операций.
Специальное обучение больных счету (выполнению арифметических действий) лучше начинать с более простых и менее всего пострадавших операций сначала в пределах первого десятка, затем второго. Операции сложения и вычитания проводятся без перехода через десяток, а умножение и деление производятся на простейших однозначных и двузначных числах. Эта работа занимает 3—5 занятий. Трудности восстановительного обучения с применением разнообразных творческих методов и приемов начинаются при обучении больных вычитанию и сложению с переходом через десяток. Действие сложения или вычитания в пределах одного десятка является по своему составу простым, состоящим из одной операции (ср.: 10 - 2 = 8, 15 -5 = 10, 15 + 2 = 17, 23 - 3 = 20 и т.д.), так же, как и операции с «круглыми» числами (10+ 10,20- 10,50-40 + 10). Те же арифметические действия с числами, требующими перехода через десяток, являются по своему математическому и психологическому составу более сложными: они включают несколько операций. Исследование навыков счета у больных этой группы показало, что у них прежде всего нарушена способность совершать именно эти арифметические действия, требующие анализа пространственных схем. Эти больные не всегда в состоянии осознанно расчленить арифметическое действие на составляющие его операции. Преодоление этого дефекта и является основной задачей следующей стадии обучения. К этому времени больные уже должны знать схему десятка и уметь расчленять число на его составные части, уметь округлять числа до ближайшего десятка (ср.: 18(+2) = 20; 12(-2) = 10). Работу над восстановлением операций «округления» чисел необходимо провести до этой стадии обучения, поскольку при решении арифметических примеров с переходом через десяток они выступают в качестве конкретных звеньев в структуре решения.

Есть разные способы округления числа до десятка. Поэтому сначала надо провести ряд занятий по актуализации больным «своего» способа. С этой целью больной обучается разным способам округления, и по эффективности выполнения (более точный счет, затрата меньшего времени, уверенность в действиях и т.д.) можно судить о более доступном больному способе (или об актуализации его собственного способа).


Например, 15-7. 1-й способ: 7 = 5 + 2 (округление до 5), 2-й способ: 7 + 3 = 10 (округление до 10). Работу надо начинать с помощью метода восстановления состава числа (см. выше), используя прием сравнения величины чисел.
Задание. Указать, какое число больше или меньше (поставить соответствующий знак): 8 ... 10; 7 ... 10; 10 ... 6; 20 ... 17; 15 ... 20 и т.д. Прием количественной оценки разницы чисел (числа даются те же). Дано: 8 и 10. Выполнение больным: 8 < 10. Вопрос: на сколько единиц? «На 2»; дано: 20 и 17; 20 > 17. На сколько единиц? «На 3». Прием округления числа. Задание: округлить число 17 до 20. Операция: 17 + 3 = 20.
На этой стадии работу нужно вести только с числами и на речевом уровне.
После обучения больного понятию числа и конкретным операциям «округления» чисел можно переходить к работе над осознанием больным пооперационного решения арифметического примера. К этому времени больной уже понимает, благодаря отработанному ранее умению, что при выполнении действий с числами с переходом через десяток второе число (вычитаемое или слагаемое) нужно разбить на два составляющих его числа (путем округления), которые потом последовательно вводятся в соответствующие операции, составляющие содержание арифметического действия. Исходя из этого понимания, больных обучают разбивать арифметическое действие на последовательные операции — сначала в вербальном плане: больной совместно с педагогом, а потом самостоятельно пишет программу операций: а) округлить число, б) вычесть (или прибавить) одну часть числа, в) сложить (или вычесть) вторую часть числа. Затем программа реализуется. Дается пример: 52 - 18. Больной проделывает все операции по вербальной программе, выполняя каждую операцию и одновременно проговаривая: а) «я округляю число 18 до 20. 18(+2) = 20; б) теперь нужно вычесть полученное число, это одна часть от 18(+2) = 20; 52 - 20 = 32; в) а теперь прибавляю вторую часть числа 32 + 2 = 34».

Не менее эффективным является обучение способу решения подобных примеров, который требует от больных умения приравнивать единицы вычитаемого (или слагаемого) к единицам уменьшаемого (или первого слагаемого). Тогда состав операции приобретает следующий вид.


Сверху пишется памятка: во второй и третьей операциях нужно вычитать или прибавлять:

Обучение решению арифметических примеров на сложение и вычитание с переходом через десяток следует начинать с максимально развернутого действия с одновременным громким проговариванием решения и с опорой на внешние средства — схемы, записи. Позже, после закрепления этой формы действия, можно переходить к постепенному сокращению действия за счет изъятия из записи первой операции и перевода ее на уровень громкой речи, т.е. эта операция не пишется, а только проговаривается. Позже на уровень громкой речи переводится вторая, а затем и третья операции, и все операции проговариваются больным, но не записываются. Таким же образом, постепенно и последовательно, арифметическое действие переводится на уровень шепотной речи, а затем и на уровень выполнения его «про себя».


В случаях затруднений все операции (или некоторые из них) снова следует выносить на уровень громкой речи, а иногда и на материализованный уровень выполнения решений (запись операций).
Описанная методика позволяет создать у больного способ решения арифметических примеров (или счета), который благодаря постепенному сокращению внутреннего состава действия и перевода его с одного уровня на другой становится собственным достоянием больного. Процесс восстановления счетных операций, как мы писали выше, лучше всего начинать с выяснения индивидуальных способов выполнения арифметических действий, характерных для каждого больного. Установление способов выполнения арифметических операций, которыми больные пользовались до болезни и которые должны представлять упроченные в прошлом опыте стереотипы, является необходимым моментом в обучении, поскольку использование старого упроченного способа всегда эффективнее, чем создание нового навыка.

К обучению новому способу решения арифметических примеров следует прибегать лишь в случаях, когда не удалось выявить прежние стереотипы. В практике обучения нередко приходится сталкиваться с фактом, когда у больного старый, его собственный способ решения вспоминается в процессе и в результате его обучения новому способу выполнения вычислительных операций. Актуализация прежнего навыка не только не мешает обучению, но, наоборот, создает более благоприятные условия для создания не конкретного, а обобщенного способа выполнения счислительных операций.


Параллельно с восстановлением общей схемы решения арифметических примеров на сложение и вычитание с переходом через десяток должна идти работа по восстановлению осознания направления счета, умения анализировать пространственные схемы счета. Утеря больными направления в счете приводит нередко к тому, что отняв от уменьшаемого одну часть округленного вычитаемого, они теряются и часто не знают, что им делать с оставшейся частью вычитаемого — отнимать ее или прибавлять. Наши исследования показывают, что некоторыми больными операция сложения осознается как операция, направленная вперед (т.е. направо —>). Возможно, что это понимание связано с осознанием построения и чтения натурального ряда чисел, постепенно увеличивающегося слева направо, и запись которого также ведется слева направо. Операция вычитания связывается у них с представлением о движении в обратном направлении (налево), в сторону уменьшения чисел натурального ряда.
Для восстановления осознания направления в счетных операциях (в вычислениях) не бесполезным оказывается учет или специальная выработка этих пространственных представлений операций сложения и вычитания. С этой целью больные сначала упражняются в схематическом изображении направления операций вычитания и сложения. Эти записи выглядят следующим образом. Натуральный ряд чисел — процесс и направление получения последующего числа в натуральном ряду.

Кроме того, в процессе восстановления арифметических действий полезно, с точки зрения учета описываемого дефекта, пользоваться округлением единиц вычитаемого (или второго слагаемого) до единиц уменьшаемого; тогда больным легче усвоить, что и в первой, и во второй операции нужно вычитать. Для облегчения усвоения принципа решения арифметических примеров следует написать общую схему — таблицу на карточке и сверху обозначить нужные операции.


Действия умножения и деления также нуждаются в восстановлении. И здесь общим методическим принципом является разложение целостного, свернутого акта умножения на составляющие его операции с последующим сокращением и интериоризацией действия и автоматизацией его выполнения. Для этого больных обучают осознанию внутреннего содержания действия умножения через решение примеров развернутым способом сложения: 1) 15 = 5 + 5 + 5 = пятерка повторяется 3 раза = 5*3 = 15; 2) 15 = 3 + 3 + 3 + 3 + 3 = пять раз по 3 = 5x3=15.


Каталог: book -> medical psychology
medical psychology -> Учебное пособие «Психические и поведенческие расстройства при вич-инфекции и спиде: учебное пособие»
medical psychology -> Ббк56. 14 ■ с 34 Научный консультант серии- а. Б. Хавин
medical psychology -> Зейгарник Б. В., Братусь Б. С
medical psychology -> Принципы построения патопсихологического исследования
medical psychology -> Дифференциальная психофизиология мужчины и женщины
medical psychology -> Киев «Здоров'я» 1986
medical psychology -> Научной рефлексии
medical psychology -> Клиническая психотерапия
medical psychology -> Психосоциальная аддиктология
medical psychology -> Ф., Боков С. Н. Медицинская психология: основы патопсихологии и психопатологии


Поделитесь с Вашими друзьями:
1   ...   5   6   7   8   9   10   11   12   ...   22


База данных защищена авторским правом ©psihdocs.ru 2017
обратиться к администрации

    Главная страница