41. Мышление как процесс решения задач. Информационная теория мышления. Эвристики.



Скачать 288,53 Kb.
страница1/13
Дата11.06.2019
Размер288,53 Kb.
  1   2   3   4   5   6   7   8   9   ...   13
41. Мышление как процесс решения задач. Информационная теория мышления. Эвристики. (см. еще Нуркову Березанскую).

Что именно следует сделать, чтобы решить некоторую задачу? Мы рассмотрим стратегии и процедуры, обычно используемые людьми. Прежде всего задачи бывают двух основных типов: чет­ко поставленные и нечетко поставленные. В четко поставленной задаче цель ясно сформулирована. Вот примеры таких задач:

1) как наилучшим образом проехать в другой конец города, если все главные улицы закрыты для транспорта по случаю парада;

2) как решить шахматную задачу, помещенную во вчерашней газете: белые начинают и делают мат в пять ходов.

В этих задачах, помимо ясной цели, имеется определенный способ судить о том, идет ли процесс решения в надлежащем на­правлении. И хотя в жизни, пожалуй, чаще встречаются задачи, поставленные нечетко, у нас есть все основания сосредоточить на­ше исследование на четко поставленных задачах. Наша цель — выяснить, какие процессы использует человек, добивающийся решения той или иной задачи. Мы хотим понять, как он строит внутреннюю модель задачи, какую стратегию избирает, каким правилам следует. Мы хотим узнать, какие средства позволяют ему успешно продвигаться к решению. Результаты этих исследований должны быть приложимы к решению любых задач, поставлены ли они четко или нечетко.

Лучше всего, вероятно, начать с исследования конкретной задачи.



Данная задача относится к классу криптоарифметических за­дач. В приведенном выражении использовано десять букв, каждая из которых соответствует определенной цифре. Задача состо­ит в том, чтобы найти для каждой буквы соответствующую ей цифру, так чтобы получившиеся цифры удовлетворяли сформулированному арифметическому равенству.

Мы разберем небольшую часть словесного отчета одного испытуемого, пытавшегося решить эту задачу. Дав пояснения к за­даче, сходные с приведенными выше, его просили думать вслух в процессе поиска решения. Испытуемый впервые пытался решить такого рода задачу. Полная запись его высказываний в течение 20 мин, затраченных на решение, составляет протокол объемом около 2200 слов (задача, ее анализ и приводимые ниже цитаты из протокола заимствованы из работы Ньюэлла, 1967).

Протокол решения задачи «DONALD+ GERALD»



Каждая буква имеет одно и только одно числовое значение? (Это был вопрос к экспериментатору, который ответил: «Одно числовое значение»). Имеется десять различных букв, и каждая из них имеет одно числовое значение.

Букв две, и каждая из них соответствует 5; значит, Т есть нуль. Так что, я думаю, можно для начала вписать это в текст задачи. Я вписываю: 5,

5 и 0.

Посмотрим, есть ли у нас еще Т. Нет. Зато есть еще одно D. Значит, я могу поставить 5 с другого края.

Дальше, у нас есть два А и два L — каждая пара в одном разряде и еще три R. Два L равны одному Р. Разумеется, я перенес 1 во второй разряд, откуда следует, что Р должно быть нечетным числом, поскольку сложение двух одинаковых чисел дает четное число, а 1 — число нечетное. Так что Р может быть равно 1 или 3, но не .5, не 7 и не 9.

(Здесь наступила долгая пауза, и экспериментатор спросил: «О чем вы сей­час думаете?»).

Теперь G. Раз R — нечетное число, a D равно 5, то О должно быть чет­ным. Я смотрю на левый край примера, где складывается D с G. Ах, нет, возможно, сюда надо прибавить еще 1, если мне пришлось бы перенести 1 из предыдущего разряда, где складываются О и Е. Пожалуй, мне нужно на минуту отвлечься от этого.

Вероятно, лучше всего решать эту задачу, перебирая различные возмож­ные решения. Но я не уверен, что это окажется самым легким путем.

Цитированный текст будет служить нам первичным материа­лом для анализа процесса решения. Первое впечатление от такого протокола — что испытуемый не подходит к задаче прямо и не­посредственно. Он накапливает информацию и проверяет различ­ные гипотезы, выясняя, к чему они приводят. Он часто заходит в тупик и, отступая, пробует другой путь. Взгляните на протокол. Испытуемый начинает энергично и сразу обнаруживает, что Т равно нулю.



Поделитесь с Вашими друзьями:
  1   2   3   4   5   6   7   8   9   ...   13


База данных защищена авторским правом ©psihdocs.ru 2019
обратиться к администрации

    Главная страница